Business Organizational Forms in Self-organizing
Multiagent Systems

Diplomarbeit

von
Tore Knabe

nach einem Thema von Prof. Dr. Jorg H. Siekmann
im Fachbereich 6.2, Informatik, der Universitit des Saarlandes

October 9, 2002

Eidesstattliche Erklarung

Hiermit erkldre ich an Eides statt, dass ich diese Arbeit selbstdndig verfakt, nur
die im Literaturverzeichnis zitierten Quellen benutzt und sie noch keinem anderen
Priifungsamt vorgelegt habe.

Saarbriicken, im Juli 2002 Tore Knabe

Acknowledgments

I would like to thank Prof. Siekmann for the opportunity to write this thesis
at his chair. I am also grateful to Michael Schillo, whose support, supervision,
and encouragement made this work possible. For important input on the com-
putational side I thank Sven Jacobi and Rainer Siedle, and for the sociological
side I thank Bettina Fley, Michael Florian, Frank Hillebrandt, and Daniela Hinck.

Abstract

This thesis investigates whether organizational forms derived from sociological
models of real-world business organizations can increase the performance of a
market-based multiagent system. The market consists of customer agents who
have tasks to assign and provider agents who have the resources to complete
the tasks. The tasks can be complex, so that completing a task requires several
provider agents to work together. The multiagent system’s efficency is measured
by several performance measures. We hypothesize that the efficiency can be in-
creased if repetitive patterns in the customer tasks or their subtasks are mirrored
by corresponding structures on provider side in the form of organizations. We fur-
ther hypothesize that provider agents can be programmed to increase the system’s
efficiency on their own by self-organizing, i.e., by changing their organizational
structure based on information locally available to them.

We specify a number of selected organizational forms derived from sociology
and specify a mechanism for self-organization. We also develop new communica-
tion protocols that help to structure the coordination processes of task assignment,
and self-organization among the agents. The concepts proposed in this thesis have
been implemented in a testbed that has been used for the experimental evalua-
tion of the ideas of this thesis and is planed to serve for further research in the
interdisciplinary field socionics.

Our evaluation showed that the concepts of organizations and self-
organization can improve the efficiency of multiagent systems. We describe which
organizations are suited for which circumstances, when self-organization is ad-
visable, and give examples of possible applications of these concepts in other
systems.

Contents

1 Introduction 1
1.1 Problem Description 1
1.2 Main Results oo 2
1.3 Structure of the Thesis 2

2 Background and Related Work 3
2.1 Social Organizations 5

2.1.1 Principles of Interaction 6
2.1.2 The ADICO Grammar 9
2.1.3 Selected Organizational Forms 10
2.2 Holons e 12
2.2.1 Historical Background 12
2.2.2 Holons Today, 13
2.3 Self-Organization 0o 13
2.3.1 Definitiono oo 14
2.3.2 Characteristics of Self-Organizing Systems 14
2.3.3 Self-organization in Multiagent Systems 15
2.4 Software Agents L 15
2.4.1 Comparison with Object-Oriented Programming 16
242 Motivationo Lo 16
2.4.3 Definitiono 17
2.4.4 Architectures 18
2.5 Multiagent Systemso L oL 19
2.5.1 Motivation Lo Lo 20
2.5.2 Imteraction. o 21
2.5.3 Coalitionso 22
2.5.4 Communication o 23
255 FIPA 24
2.6 Holonic Multiagent Systems 26
2.6.1 Holonic Agents 26
2.6.2 Holonic Structures in Agent Systems 26
2.6.3 Architecture for Holonic Agents 27

2.6.4 Example Application 28

3 Problem Description 29

3.1 Problem Statement o 0oL 29
3.2 Research Questions L. 30
3.2.1 Specification of Organizational Forms and a Mechanism for

Self-organization 31

3.2.2 Development of Protocols 31
3.2.3 Experimental Evaluation 32

3.3 Applicationso 33
4 Specification 35
4.1 Market Scenarioo Lo 35
4.2 Performance Measures 36
4.2.1 Rateof Failed Orders 37
4.2.2 Profit per Provider 0000 37
4.2.3 Net Income per Organizational Form 37
4.2.4 Number of Messages 38

4.3 Selected Organizational Forms 38
43.1 General Rules o000 39
4.3.2 Single Agents L 40
4.3.3 Virtual Enterprise 40
4.3.4 Cooperationo 41
4.3.5 Strategic Network oL 42
4.3.6 Group 44
4.3.7 Corporation 44

4.4 Self-Organization oL 44
4.4.1 Creation of New Organizations 45
4.4.2 Change of Existing Organizations 46
4.4.3 Membership Conflict Resolution Algorithm 48

4.5 Protocols 48
4.5.1 Contract Net Protocol 49
4.5.2 Contract Net with Confirmation Protocol 52
4.5.3 Holonic Contract Net with Confirmation Protocol 55
4.5.4 Authority Protocol with Confirmation 57
4.5.5 Authority Protocol without Confirmation. 57
4.5.6 Self-organization Protocol for Creating New Organizations 58
4.5.7 Self-organization Protocol for Existing Organizations . . . 59
4.5.8 Voting Protocol o000 61

5 Implementation 63
5.1 FIPA-OS implementation. 63
5.1.1 FIPA-OS Overview 64
5.1.2 Alternatives to FIPA-OS 65

51.3 JESS . . . 65

5.1.4 The User Interface 66

5.2 C++ Implementation 67
5.2.1 Reasons for a Second Implementation 67
5.2.2 Differences Between the Implementations 68
5.2.3 Hardware Used 68

5.3 Scheduling Algorithm 0. 68
5.3.1 Scheduling in our Implementation 68
5.3.2 Scheduling Overview 69
5.3.3 Scheduling Requirements in our Application 69
5.3.4 Choice of Scheduling Algorithm 69
5.3.5 Speed of Selected Algorithm 70

5.4 Communication not Handled by the Protocols 70
5.4.1 Simulation Control Communication 70
5.4.2 Special Communication for Strategic Networks and Groups 71
5.4.3 Special Communication for Corporations 71

6 Experimental Evaluation 73

6.1 Hypotheses 73

6.2 Experimental Designo o000 78
6.2.1 Independent Variables 78
6.2.2 Dependent Variables 80
6.2.3 Fixed Factors Lo 81
6.2.4 Experimental Scenarios 82
6.2.5 Scenario for Hypotheses 1-3 82
6.2.6 Scenario for Hypothesis 4 83
6.2.7 Scenario for Hypothesisband 6 83
6.2.8 Scenario for Hypotheses 7-9 83

6.3 Results and Discussion Lo 83
6.3.1 Hypothesis 1 83
6.3.2 Hypothesis 2 0o 85
6.3.3 Hypothesis3, 86
6.3.4 Hypothesis4 00 87
6.3.5 Hypothesisb, 88
6.3.6 Hypothesis6 89
6.3.7 Hypothesis 7 90
6.3.8 Hypothesis8, 90
6.3.9 Hypothesis9 o000 91
6.3.10 Summary 92

7 Conclusions 97

7.1 Summary 97

7.1.1 Specification of Organizational Forms and a Mechanism for
Self-organization 97

7.1.2 Development of Protocols
7.1.3 Experimental Evaluation
7.2 Future Work

A Configuration of the Experiments

List of Figures

2.1
2.2

2.3
24
2.5
2.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2

6.1
6.2

6.3

Relationships between fields in sociology and computer science. . . 4
Causal relationships between the social factors influencing the form

of cooperation. 6
Market framework [Guttman and Maes, 1998]. 21
Example of a FIPA ACL message. 25
Different forms of holonic agents [C. Gerber, 1999]. 27
INTERRAP architecture [C. Gerber, 1999]. 28
Task assignment in scenarios with single agents. 40
Task assignment in scenarios with a virtual enterprise. 41
Task assigment in scenarios with cooperations. 42
Task assignment in scenarios with strategic networks. 42
Task assignment in scenarios with groups. 43
Task assignment in scenarios with a corporation. 45
The FIPA Contract Net Protocol. 50
Example of CNP sub-optimality. ol
The Contract Net with Confirmation Protocol. 53
Example of CNCP sub-optimality in cascading applications. . . . 55
The Holonic Contract Net with Confirmation Protocol. 56
Authority Protocol with Confirmation. 57
Authority Protocol without Confirmation. 58
Self-organization protocols. o000 60
Voting protocol.o 61
High-level architecture of FIPA-OS [Guide, 2001]. 64
Testbed for organization in multiagent systems. 66
Example of a deadlock scenario. 75
Rate of failed orders of all six organizational forms. Single agents

are least successful in assigning orders. 84

Rate of failed orders of the non-single organizational forms. Vir-
tual Enterprise and Cooperation are least, Group and Corporation
most successful. The Strategic Network falls between the two groups. 85

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

Number of messages of all six organizational forms. The number
is highest for single agents, and increases with time.
Number of messages of the non-single organizational forms. Vir-
tual Enterprise and Cooperation are less efficient than the other
three organizational forms. More hierarchical forms use fewer mes-
SAZES. 4 . e e e e e e e e e e e e
Difference between rate of failed orders for message limits 8 and
12. Single Agents experience the highest drop in successful task
assignments when fewer messages are allowed.
Income of the organizational forms in a heterogenous scenario with-
out single agents. All are roughly at the same level, except for the
Corporation, which is slightly worse at the beginning.
Income of all six organizational forms in a heterogenous scenario
with single agents. Single agents have the highest income.

Income of the non-single organizational forms in a heterogenous
scenario with single agents. Except for the Group and the Corpo-
ration, the income of all organizational forms quickly falls to very
low levels.
Income difference between scenarios with message limit 8 and 12
for all organizational forms. The more negative effect of a stricter
message limit on single agents only shows at the beginning.
Rate of failed orders in the system with and without self-
organization. The rate does not seem to be affected by self-
organization.o
Number of auction-related messages in the system with and with-
out self-organization. Self-organization reduces the number of mes-
sages sent in the system by several ten thousands.
Number of self-organization messages. This number is around 100,
which is much lower than the tens of thousands auction-related
messages saved by self-organization.
Profit per provider with and without self-organization. Self-
organization does not seem to influence the profit.

92

Chapter 1

Introduction

This thesis is a product of the recently increasing cooperation of the fields artificial
intelligence and sociology. Although it draws on both disciplines, the emphasis
is strongly on the side of artificial intelligence. Our goal is to investigate the
application of sociological concepts to computational systems. The first section
describes the computational systems we have in mind and the concepts derived
from sociology. The second section reports the results of our experimental evalu-
ation of applying the concepts to the system. The third section gives an overview
over the structure of this thesis.

1.1 Problem Description

The present thesis deals with the application of models of business organizations
derived from sociological theories to self-organizing multiagent systems. The
central setting for this work is a market of two kinds of agents, customers and
providers. The customer agents have tasks they need to be done by provider
agents. These tasks can be complex and may go beyond the capacities of any
single agent, so that they require the working together of several providers. The
customers try to find providers who can complete the task to be assigned by
auction mechanisms. In order to find out how efficient this market works and
to measure the changes in performance that result from application of socio-
logical concepts, we define a number of performance measures. If the system
contains many agents or the tasks to be assigned require the collaboration of
many providers, assigning the tasks with auction systems becomes increasingly
complex and methods to improve the performance of the system as measured
by these performance measures become more important. We hypothesize that
the system performance increases if repetitive structures or substructures in cus-
tomer demand are mirrored by organizational structures on provider side. Since
customer demand can usually not be predicted by the providers, we develop a
mechanisms for them to change their organizational structure and adapt it to

2 Introduction

new order situations. We implemented the proposed concepts in a testbed and
experimentally evaluated the effect of organizations and self-organization on the
performance measures.

1.2 Main Results

Our experimental evaluation showed that organizations and self-organization can
increase the efficiency of multiagent systems. Whether to pre-design the organi-
zations or use self-organization depends on the specific conditions of the scenario.
Our results suggest that if the order situation does not change and it is important
to have a low rate of failed task assignments and few messages used for the auc-
tions, it is advisable to either put all agents into organizations such that no single
agents are left or, if single agents have to be present, make all organizations of one
of the forms group or corporation. If the order situation does change, then start-
ing all agents as single agents and allowing them to self-organize will still provide
the system with the advantage of using fewer messages, without increasing the
number of failed task assignments.

1.3 Structure of the Thesis

The second chapter gives an overview of the research field underlying the the-
sis. Since this thesis is based on the interdisciplinary field socionics, some of
the research fields are rooted in sociology, while others are rooted in computer
science. The third chapter gives a more detailed problem description, states
the research goals of the thesis and offers some examples for applications of the
proposed concepts. We give a formal specification for the system in the fourth
chapter, and describe a testbed implementing these specifications in the fifth.
The sixth chapter presents the experimental plan and the results of the experi-
mental evaluation. Finally, the seventh chapter concludes the thesis by giving a
summarizing overview and offering ideas for future work. The appendix contains
the experimental configurations in tabular form.

Chapter 2

Background and Related Work

This thesis is rooted in the field socionics and is an attempt to contribute to
the understanding of presently not thoroughly investigated issues in this new
research area. Socionics is a recently created field between sociology and arti-
ficial intelligence [Malsch, 2001]. The name’s similarity to bionics reflects the
common idea shared by both fields: just as biological phenomena inspire tech-
nical innovations in bionics, socionics looks for concepts in sociology that can
be adopted in computer systems to increase the efficiency of implementations of
artificial intelligence. Studying these implementations feeds back on sociology in
that simulations of societies of artificial, social entities can serve as a testbed for
social theories that are difficult to evaluate in real human societies. In socionics,
scientists from both fields cooperate to investigate three major issues of interest
in this interdisciplinary area:

1. Modern society has a large inventory of concepts that multiagent systems
could be modeled on, for example cultural values, social roles, norms and
conventions, shifts and institutions, or structures of power and authority.
Researchers working in the field hope that applying these concepts will
give multiagent systems some of the adaptivity, robustness, scalability, and
reflexivity of social systems.

2. On the other hand, sociology might profit from artificial intelligence by
using multiagent systems as simulation tool for testing and elaborating
its own concepts, models, and theories. Of special interest are dynamic
interactions between the micro- , meso- and macro-level on which societies
can be described. The micro-level studies interactions between individual
actors. The macro-level is concerned with phenomena of social systems
at large, like cultures, and the meso-level lies between the two; it studies
structures like organizations.

3. Finally, socionics deals with the study of hybrid societies, which may contain
both software programs and humans as agents and which many believe to

4 Background and Related Work

Computer Science Sociology

Objects

\

Software
Agents

Social
Organizations

\

Multiagent
Systems

Y

Holonic
Multiagent
Systems

Self-Organization

Testbed used
for this thesis

Figure 2.1: Relationships between fields in sociology and computer science.

play a larger role in the future. An important research question in hybrid
societies is how these societies influence our interaction with technology and
with each other.

This chapter gives an overview of the fields of computer science and sociology
that are relevant for understanding the motivation behind the concepts proposed
in this thesis and for developing the testbed that we used to evaluate them.
Figure 2.1 shows the fields and the relationship between them. The left column
consists of concepts in the field of computer science. Each concept developed
from a previous one, indicated by arrows connecting upper, “earlier” concepts to
lower, “later” ones. The right column consists of sociological concepts that had
an influence on the development of the fields of computer science. Except for the
uppermost box and the uppermost oval, each box and oval is described in its own
section.

2.1 Social Organizations 5

The object-oriented programming paradigm of computer science that empha-
sizes the importance of abstraction and encapsulation becomes a new paradigm
under the influence of the notion of autonomous, reactive, proactive and social
agents as observed in nature: the paradigm of software agents. Individual soft-
ware agents vary widely in how complex their implementation is. Instead of
increasing the level of sophistication of individual agents, some researchers take
their inspirations from social organizations, and study the emergent phenom-
ena that appear through interaction of many simple units in multiagent systems.
Natural complex systems often appear to have a recursive structure; structural
units are elements of larger structures and at the same time are made up of more
fine-grained elements themselves. Applying this concept of holons to multiagent
systems results in holonic multiagent systems, where groups of agents can build
structures that look and behave like single agents in the system. If these agents
change these structures by grouping with other agents or changing their roles and
functions inside the group they form a system that is capable of self-organization,
of adapting to environmental changes in order to increase its performance or that
of individual agents. We have implemented such a system in a testbed to evaluate
some models of social organizations in self-organizing holonic multiagent systems.

2.1 Social Organizations

The ability to cooperate might be one of the most important factors responsible
for the current position of humans in Earth’s ecology. Other species do also
show forms of cooperation, as seen in insect states, swarms of fish or wolf packs.
However, these forms are much more limited in range of interaction between the
cooperating individuals as well as changing memberships. They are, therefore,
not as big an improvement over the capabilities of an individual and less flexible
to changing circumstances when compared to cooperations as seen in human
societies. Human beings can choose how and whom to interact with depending
on the configuration of one’s own and others’ goals, resources, abilities as well
as the current and possible future situations. Different such configurations call
for different forms of cooperation. Sociologists have studied these forms, ranging
from short term interactions between strangers to big, long lasting organizations
like multi-national enterprises. This section gives an overview of some of their
insights that promise to be applicable to a scenario of agents in a market-based
system.

The most important factors identified by sociologists that decide what form of
cooperation will suit its members’ interests are: goals, abilities, and performance
(Figure 2.2).

Each individual’s goals and abilities determine his actions, his "local’ perfor-
mance. The performance of all individuals taken together in turn determines the
group’s performance, the ’global’ performance. An individual is motivated to

6 Background and Related Work

Local Performance

External Circumstances

Global Performance

Figure 2.2: Causal relationships between the social factors influencing the form
of cooperation.

participate in the group if this global performance satisfies his goals more than
he could by not participating. In the words of March and Simon: "An organiza-
tion will exist so long as it can offer its members inducements which exceed the
contributions it asks of them." [March and Simon, 1958|

According to Mayo and Barnard, the fundamental problem of cooperation
stems from the fact that individuals have only partially overlapping goals [Mayo,
1945, Barnard, 1968|. Further complications arise from an individual’s true goals
and abilities not being directly visible to others, and from external circumstances
not always being predictable. Participating in a group can therefore pose a risk
to the individuals, especially if it requires them to invest some of their resources
without the guarantee of a certain pay-off.

2.1.1 Principles of Interaction

Several mechanisms have evolved to enable cooperation in spite of these uncer-
tainties. Three major principles of these mechanisms are economic exchange,
authority, and gift exchange. Williamson saw economic exchange and authority
as two alternative modes of organizing economic activities, manifested in the ex-
treme forms of markets and hierarchies [Williamson, 1975]. Gift exchange can be
seen as a dimension orthogonal to the first two.

Economic Exchange

Economic exchange is the foundation of markets: an individual gives some of his
resources and receives others in return. Implicit or explicit in this exchange is a
contract that states what is exchanged for what. Therefore, market transactions

2.1 Social Organizations 7

consist of contractual relationships.

Each party is bound only to deliver what is specified, so the contract must
specify who must deliver what under every possible state of nature. A simple
example is buying bread, where a set amount of money is exchanged for a set
number of bread loafs. Economic exchange works well in cases like these when
there is low uncertainty and the explicit or implicit contracts can be made to cover
all possible contingencies concerning the exchange. Under such circumstances,
auctions provide a very, if not the most, efficient means of finding suitable trading
partners.

However, auctions fail when the nature of the exchange makes it difficult to
objectively specify all aspects in a contract. In the bread example above, it
would be difficult to describe the expected product quality in an auction’s call
for proposals.

Incomplete specifications leave many opportunities for economic actors to
maximize their own profit at the expense of those they deal with. For example,
the bread might be made from minor quality ingredients.

This uncertainty makes it risky to acquire certain goods or services on the
market. Although there are reputation mechanisms that help to increase trust
and reduce risk, they cannot completely eliminate it. Furthermore, there are costs
bound to them; economists call them ’transaction costs’: "A transaction cost is
any activity which is engaged in to satisfy each party to an exchange that the
value given and received is in accord with his or her expectations. Transaction
costs arise principally when it is difficult to determine the value of the goods
or service. Such difficulties can arise from the underlying nature of the goods or
service or from a lack of trust between the parties" [Ouchi, 1980]. Jarillo sees lack
of trust as the quintessential cause of transactional costs [Jarillo, 1988], similar to
Williamson, who finds opportunism a central concept in the study of transaction
costs [Williamson, 1975]. If transaction costs are too high, economic exchange
needs to be replaced by other mechanisms, such as authority.

Authority

The mechanism of authority is found in the hierarchical structures of organiza-
tions. It is less flexible and less efficient than an optimal solution that could
in principle be reached with a market mechanism if there were no transaction
costs. "An organization such as a corporation exists because it can mediate eco-
nomic transactions between its members at lower costs than a market mechanism
can" [Ouchi, 1980]. In the absence of transaction costs, there would be no firms
at all, just a market of separate economic atomistic units. "In this sense, ev-
ery bureaucratic organization constitutes an example of market failure" [Ouchi,
1980.

Economic units can get together to form a hierarchy, with some units agree-
ing to take orders from units higher in this hierarchy. The economic exchange

8 Background and Related Work

Motivation | Aim

Altruism making others happy
Egoism 1 exchange

Egoism II warm glow, social approval
Strategical | signaling, building trust
Fairness norms, reducing inequity
Survival selection

Table 2.1: Theories of gift giving [van de Ven, 2000].

for every single transaction has been replaced by employment relationships. The
employment relation is an incomplete contract; by agreeing to be employed, a
worker accepts the right of superiors to direct and monitor his work activities.
The direction, surveillance, and evaluation made possible in a bureaucratic or-
ganization lowers the uncertainty and opportunism that lead to high transaction
costs in market mechanisms, but they lower the workers’ autonomy as well.

In summary, the autonomy in market systems is given up in hierarchical
organizations. Many organizational forms can be placed somewhere between the
extremes of market and hierarchy. The degree to which autonomy is reduced by
authority depends on the nature of the tasks the organization is dealing with.
Different tasks call for different forms of organizations, with different positions
on the market/hierarchy dimension.

Gift Giving

The third mechanism, much less well known than economic exchange and au-
thority, is gift giving. Economic agents might accept transactions which benefit
another, without receiving an appropriate compensation or being forced to this
transaction by authority. They are said to have given a "gift" to the other. Gift
giving is part of current business practice; "Managers admit that informal coop-
eration between competitors exists for specified tasks with little profit and that
subcontractors are deliberately given jobs in times of low income to let them
survive economically to the next period of many customer requests, where the
subcontracting will again be beneficial" [Schillo et al., 2001a]. Other examples of
gift giving can be seen in the open source contribution of programmers and the
scientific community. van de Ven discusses various theories that try to explain
the motivation for giving [van de Ven, 2000]. Table 2.1.1 gives an overview of
these theories.

In the context of this thesis, gift giving will be interpreted as a signaling device.
Giving a gift, for example by accepting an economic dissimilarity in a transaction,
the giver signals that he is interested in a longer relationship based on mutual
trust. The underlying principle is the expectation of reciprocity. According to

2.1 Social Organizations 9

Gouldner, reciprocity is one of only two social agreements that have been found
to be universal among societies across time and cultures (the other is the incest
taboo) [Gouldner, 1961]. Gift giving and authority might be seen as two different
ways of dealing with the lack of trust inherent in a system of actors with different
interests.

2.1.2 The ADICO Grammar

Modeling institutions requires identifying their basic characteristics and imple-
menting them in an algorithmic form. The political science literature offers a
formalism that can act as an interface between the real world of institutions and
the world of precise computer models: the ADICO grammar.

The ADICO grammar has been proposed in 1995 by Crawford and Ostrom
to facilitate the analysis of institutions and cooperations in game theory and
behavior research [Crawford and Ostrom, 1995]. Crawford and Ostrom view
institutions as “enduring regularities of human action in situations structured by
rules, norms, and shared strategies, as well as by the physical world.”

According to their view, the basic principles characterizing and distinguishing
institutions can be expressed in linguistic statements, all of which can be assigned
to one of the categories mentioned above: rules, norms, and shared strategies.
An important assumption underlying this view is that even implicit and tacit
agreements can be expressed in this form.

The ADICO grammar offers a way of decomposing such linguistic statements
into five components: ATTRIBUTES, DEONTIC, AIM, CONDITIONS, and OR ELSE.
The ADICO acronym is derived from letters of these components. They have the
following meaning:

A ATTRIBUTES is a holder for any value of a participant-level variable that dis-
tinguishes to whom the institutional statement applies (e.g., 18 years of
age, female, college-educated, 1-year experience, or a specific position, such
as employee or supervisor).

D DEQONTIC is a holder for the three modal verbs using deontic logic: permitted
(P), obliged (O), and forbidden (F).

I AIM is a holder that describes particular actions or outcomes to which the
deontic is assigned.

C CONDITIONS is a holder for those variables which define when, where, how,
and to what extent an AIM is permitted, obligatory, or forbidden.

O OR ELSE is a holder for those variables which define the sanctions to be im-
posed for not following a rule.

10 Background and Related Work

All shared strategies can be written as
[ATTRIBUTES] [AIM] [CONDITIONS] (AIC);
all norms can be written as
[ATTRIBUTES] [DEONTIC] [AIM] [CONDITIONS] (ADIC),
and all rules can be written as:
[ATTRIBUTES] [DEONTIC] [AIM] [CONDITIONS] [OR ELSE] (ADICO).

Norms can be seen to subsume shared strategies, and rules to subsume norms.
Crawford and Ostrom offer an example for the transformation of a linguistic
rule underlying the cooperative behavior of a group of people to ADICO grammar:

All villagers must not let their animals trample the irrigation chan-
nels, or else the villager who owns the livestock will be levied a fine.

all villagers

F

irrigation channel trampled by their animals
at all times

fine

o|lQ—| o=

2.1.3 Selected Organizational Forms

Existing business organizations can be classified by the degree to which they use
the three mechanisms above: rules, norms, and shared strategies. Five forms of
organizations will be introduced with regard to their accepted norms and applied
mechanisms: the cooperation, the virtual enterprise, the strategic network, the
group, and the corporation.

Virtual Enterprise

The definition of virtual enterprises varies widely. The present thesis adopts the
definition of Hales: "The virtual enterprise is a network of independent firms
in a synergistic relationship with a central executive entity operationally linked
by extensive ICT [information and communications technologies| to achieve a
common goal" [Hales and Barker, 2000]. Virtual enterprises have attracted a lot
of interest in recent times, the main reasons for this being globalization and single
sourcing [Kemmner and Gillessen, 2000]. Globalization has exposed enterprises to
an environment of much stronger competition, increasing the pressure for faster,
more efficient production and better services. The term ’single sourcing’ describes
the tendency to reduce the number of suppliers in order to lower complexity in the
production chain and increase the price pressure through larger supply volumes.

2.1 Social Organizations 11

Current trends favor producers who have large know-how bases, produce in
large numbers and at the best locations, but who can still adopt quickly to chang-
ing technologies and demands. Virtual enterprises promise to offer the best of
both worlds, flexibility and economy of scale. They are networks of legally and
economically independent enterprises, each concentrating on its core competen-
cies and out-sourcing the rest, modeled on the best-of-everything organization.
The enterprises work together in vertical or horizontal structures and coordinate
their actions with the help of information and communication technology. Work-
ing in vertical structures means the output of one enterprise is the input of the
other; enterprises working in horizontal structures produce on the same level of
the supply chain. The virtual enterprise appears and acts like a single enterprise
to the outside. There is no physical institutionalization of central management
functions. The contracts defining the relationships between the participating
enterprises are deliberately left loose, in order to facilitate quick formation and
greater flexibility in reorganization. Risks and costs tend to be distributed among
all partners.

Cooperation

A cooperation can be defined by the working together of a group of independent,
equally positioned enterprises with comparable financial power. The basis is a
relationship of ’equals’. They differ from virtual enterprise in that the relation-
ships between their members is based on long-term contracts and in that there
is a central organ. The function of this central organ is restricted to operative
management. Individual enterprises can be members of several cooperations.
They retain the option to exit any time. The emphasis of inter-organizational
coordination is on trust-building mechanisms like gift-giving.

Strategic Network

Strategic networks differ from cooperations in that they use stronger legal con-
tracts, and feature a hub firm that “sets up the network, and takes a pro-active
attitude in the care of it” |Jarillo, 1988]. The hub firm in a strategic network
has more authority than the central organ of a cooperation and is usually signif-
icantly larger than the other members of the network. It coordinates activities
in the strategic network, but the members retain their legal independence and
autonomy. This network arrangement allows a participating firm to specialize in
those activities of the value chain that are essential to its competitive advantage,
reaping all the benefits of specialization, focus and, possibly, size. Membership
in several strategic networks is possible, and firms have the right to leave the
network. The time frame and financial volume are usually larger than in the case
of virtual enterprises and cooperations.

12 Background and Related Work

Group

Groups are formed from enterprises that retain their legal independence, but are
bound by contract to the authority of the central firm [Freichel, 1992]. In contrast
to the strategic network, no multiple memberships are allowed, and there usually
is no exit option for subordinate firms. All economic activities are focused on the
group and subject to directions from the head enterprise. The interdependency
between the firms is found in an authoritative hierarchy, whereas in strategic
networks, it is based on economic relationships.

Corporation

The corporation is the result of the complete inclusion of all legal and economic
aspects of the original companies into a new entity. This organizational form is at
the hierarchical end of the spectrum market-hierarchy. Companies merging into
a corporation give up all of their autonomy. The process is usually not reversible;
once inside a corporation, the former status can not be regained. In the business
world, the process of merging usually happens when a large company assimilates
a much smaller one.

2.2 Holons

2.2.1 Historical Background

The term "holon" has been introduced by Koestler in 1968 in his book "The Ghost
in the Machine" |Koestler, 1967]. Koestler observed that complex systems, be
they natural or man-made, are hierarchically composed of less complex parts.
The reason for this he sees in that any system needs to be able to recover from
disturbances in the course of its development and further existence. Errors in
monolithic structures affect the whole system, making recovery very costly. The
potential for such disturbances increases with the system’s complexity, hence
more complex systems tend to be built from stable intermediate forms.

The components of a system have a functional stability of their own and can
be decomposed into parts of lesser complexity. Therefore, they can be seen as
parts and wholes at the same time. Most entities are such "inner nodes" in trees
of hierarchical structures: human cells, insects in a colony, or departments in
an institution. Koestler calls these inner nodes "holons", from the Greek word
"holos" for whole and suffix "on" for part.

The two roles of the holon require it to balance two contradictory forces: the
force of separation and the force of cohesion. This balancing property can be
found on multiple resolution levels of the system which the holon is a part of,
as it replicates in self-similar structures throughout the hierarchy. Interaction
between different holons is constrained to paths along the hierarchical structure.

2.3 Self-Organization 13

For example, workers of different departments do not communicate directly with
each other, but via their respective departments’ heads.

The properties exhibited by holons are the reason why Koestler’s terminology
is used today in several fields of technology: the importance of balance between
autonomy and cooperation, tractable complexity through self-similar structures
at different levels, and efficient functioning through controlled interaction has
been pointed out before.

2.2.2 Holons Today

One of the most promising applications of the holonic concept is in the area of
manufacturing. Increasingly, the requirements for modern manufacturing sys-
tems demand flexibility in reacting to changing consumer demand, resilience to
unexpected disturbances, and efficiency in production. The idea is to organize
manufacturing units into recursive, reconfigurable hierarchies of holons. Every
holon has a certain degree of autonomy in that it can build and execute its own
plans, but it can also cooperate with other holons to form a superholon and let
the superholon accomplish tasks that none of its constituting subholons could do
alone. A flexible organization like this is called a holarchy.

In order to make holarchies a viable alternative to traditional manufacturing
systems, the Holonic Manufacturing Systems (HMS) consortium has been created
in reaction to [Suda, 1989, Suda, 1990|, who first proposed the application of
holons to manufacturing. Its task is to do the necessary research and set the
required standards to integrate machines and humans in autonomous, self-reliant
units, which interact together to build a holarchy.

Other applications of holons are in the field of business interaction, for ex-
ample the coordination of supply webs |Gerber et al., 2001] or the creation of
virtual enterprises |Ulieru et al., 2001]. Just like manufacturers, businesses face
quicker change in consumer demands and stronger competition requiring higher
efficiency. In light of increasingly complex networks of suppliers and customers
new mechanisms of cooperation are called for, to answer the challenges created by
the rising use of new technologies like the Internet. Modeling these new mecha-
nisms after the example of biological and social systems in the forms of holarchies
might provide the needed flexibility and efficiency.

2.3 Self-Organization

According to Parunak, in the ultimate agent vision “the application developer sim-
ply identifies the agents desired in the final application, and they organize them-
selves to perform the required functionality” [Parunak, 1997|. Self-organization is
clearly a promising field for computer scientists working with multiagent systems,
but we will see in this section that its understanding is based on an intuitive no-

14 Background and Related Work

tion, as it still lacks a clear definition. Self-organizing systems have a number of
desirable properties that are behind the motivation of building self-organization
into software systems to help coping with the increasing complexity of software.
We will describe some of these properties, and conclude this section with related
work that tries to capture some of these properties in multiagent systems.

2.3.1 Definition

The term self-organization was introduced in 1947 by the psychiatrist and cyber-
netics researcher Ross Ashby [Ashby, 1947], but to this day there is no officially
accepted definition of what constitutes a self-organizing system. Omne reason
for this is that the intuitive understanding of the term—that self-organizing sys-
tems are systems that appear to organize themselves without external direction,
manipulation, or control-is difficult to formalize without running into contra-
dictions. For example, insect societies like ant colonies are widely regarded as
self-organizing systems, but their structure and behavior is clearly dependent on
external circumstances; the ant colony adapts to its environment to maximize its
chances of survival. A definition that is suitable for systems like ant colonies in
that it expresses self-organization in terms of goals and performance is proposed
by Klir [Klir, 1991]:

Definition 1 (Self-organizing System according to Klir, 1991)

A self-organizing system is a system that tends to improve its performance in
the course of time by making its elements better organized for achieving the goal.

The problem with this definition is that it is not clear what the concepts goal
and performance mean in the context of physical or geological systems where the
term self-organization has been applied as well. However, this thesis deals with
multiagent systems that are inspired by sociological and biological concepts, for
which the given definition is sufficient. A more generally applicable definition
would emphasize that the system structure often appears without explicit pres-
sure or involvement from outside the system and that its constraints are internal
to the system, resulting from the interaction among the components.

2.3.2 Characteristics of Self-Organizing Systems

The characteristic that is most strongly associated with self-organizing systems
is emergence. Emergence is the formation of a coherent pattern that arises out of
interactions of the system’s components. This pattern can be quite complex and
useful to the system, even though the individual components act according to
very simple rules. The system’s behavior looks like it was designed in a top-down
fashion, whereas it really originates bottom-up from many simple interactions.
Insect states, especially ant colonies, are the prototypical example for systems

2.3 Self-Organization 15

with emerging properties. Each individual ant has a very simple “program”, yet
the colony as a whole is capable of adapting to a wide range of environmental
circumstances. For example, it is important for the efficient functioning of the
colony that ants find nearby food sources and lay out short paths between their
nest and the food. The colony is actually able to build minimum spanning trees
that connect the nest to the food by each ant following this simple program
|Parunak, 1997

e Avoid obstacles

e Wander randomly, or towards the general direction of nearby pheromones
if any.

If holding food, drop pheromone at constant rate.

If food and not holding any then pick it up.
e If at nest and holding food then drop it.

Emergence is often a desirable property when engineering complex systems,
because designing a template for a simple unit and creating a system from inter-
acting units built from this template is much easier than hard-coding complex
behavior into the system in a top-down fashion. Two further desirable properties
of self-organizing systems are homeostasis, which is the capability to return to
a steady state after disturbance, and homeorhesis, the ability to seek out new
developmental pathways through successive instabilities [Sahal, 1979].

2.3.3 Self-organization in Multiagent Systems

The characteristics of self-organizing systems described above suggest that self-
organization might be a useful paradigm for building software systems that are
applicable to a wide range of complex tasks. One argument for multiagent sys-
tems is that agents might be just at the right level of complexity to constitute the
interacting elements of self-organizing systems. André et al. have built a central-
ized MAS that orders its agents in a hierarchic graph of service decomposition
and that is capable of dynamic reorganization by changing the decomposition de-
pending on the performance of the current structure [André et al., 1990]. Turner
and Jennings argue that multiagent systems need to be both self-building and
adaptive if they have to be scalable and if the number of agents can change dur-
ing runtime [Turner and Jennings, 2000]. By self-building they mean the agents’
ability to determine the most appropriate organizational structure for the them-
selves at runtime, and by adaptive they mean the ability to change this structure
as their environment changes. Brooks and Durfee show that congregation, the
self-organization of the system into smaller groups of agents, can help allocating
problems scale to large populations by allowing agents to interact locally [Brooks
and Durfee, 2002].

16 Background and Related Work

2.4 Software Agents

Agent technology has been gaining increasing popularity among researchers in the
last decade. One reason for this is that many see it as a new step in the evolution
of programming approaches, promising to let us develop software systems that are
too complex to handle with earlier paradigms, like object-oriented programming
(OOP). We introduce the concept of agents by describing it in terms of such an
evolutionary step in the first section. The second section presents arguments for
the use of agent technology. Agents are certainly not always the best way to
implement all kinds of software systems, but they are a promising approach for
certain classes of problems. The third section deals with a more formal definition
of agents, but can only concentrate on a few suggestions used in the literature,
as there still is no universally accepted definition of the term “agent”. Finally,
the fourth section gives an overview over some popular architectures for software
agents, showing that agents vary widely in their level of sophistication.

2.4.1 Comparison with Object-Oriented Programming

In our overview picture at the beginning of this chapter we suggested that software
agents are the product of applying concepts from real-world agents to object
technology. A good way to introduce agents is therefore to compare them to
objects and show what they have in common and where they differ. According to
Parunak, both programming paradigms emphasize a modular unit behavior and
an internal unit state [Parunak, 1997|. The crucial difference is that objects are
invoked by external messages, whereas agents can be invoked internally by rules
or goals. In this sense, agents are autonomous: they can react not only to specific
method invocations, but also to observable events within the environment. They
can actually poll the environment for events and other messages to determine
what action they should take. This property makes them proactive, in contrast
to objects, which are conventionally passive, with their methods being invoked
under a caller’s thread of control [Odell, 2000b].

A further important difference between agents and objects is that in order to
program with objects, the programmer needs no know in advance the details of
the objects’ interfaces. In contrast, agents can employ other mechanisms, such as
advertising their services and capabilities in directories that other software can
query. This advantage in interoperability is one of the major arguments for using
agents in the next section.

2.4.2 Motivation

Due to the increasing number of people using information technology and ris-
ing difficulty of tasks required from programs, software systems need to become
more and more complex and require the working together of different modules.

2.4 Software Agents 17

Jennings argues that conventional technologies are not well suited to deal with
such complex, distributed systems, because (i) basic building blocks are too fine
grained, (ii) interactions are too rigidly defined, and (iii) insufficient mechanisms
are available for dealing with organizational structure [Jennings, 1999].

Genesereth sees the major problem in that there is an increasing number of
programs that need to exchange information and services with other programs
to solve the tasks assigned to them; they need to inter-operate |Genesereth and
Ketchpel, 1997]. However, programs are written by different people with differ-
ent applications in mind. Their interfaces are therefore heterogenous and each
program can only communicate with a very specific class of other programs.

Apart from being designed with different interfaces, programs are the product
of different stakeholders with different aims. Hence another barrier for interop-
erability is the need for programs to cooperate even if their represented interests
do not completely coincide [Panzarasa and Jennings, 2001]. Access to informa-
tion and operations might be restricted to local entities, requiring distributed,
non-centralized structures of encapsulated units with weak links connecting each
other.

Agent technology promises to alleviate these difficulties by copying the solu-
tions nature has come up with to solve similar problems: agents can represent
interests and goals explicitly and therefore take their own interests and that
of other agents into account when deciding what to do; they communicate via
standardized messages that still leave enough flexibility to exchange information
about all required tasks; finally, they encapsulate services of the right granularity
to represent flexible building blocks for dynamic complex systems.

2.4.3 Definition

There is currently no universally agreed-on definition of agent, partly because the
term has been used outside the field of computer science in many different con-
texts. Russell and Norvig’s widely cited definition reflects this wide applicability
of the term |Russell and Norvig, 1995|:

Definition 2 (Agent according to Russel & Norvig, 1995)

An agent is anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through effectors.

A definition of agency that is more specific and more useful for the purposes of
this thesis is provided by Wooldridge and Jennings. A computer system satisfies
their weak notion of agency if it has the following properties [Wooldridge and
Jennings, 1994]:

Autonomy The system should be able to act without the direct intervention of
humans (or other agents), and should have control over its own actions and
internal state.

18 Background and Related Work

Reactivity The system should perceive its environment, and respond to changes
in it to reach its goals.

Sociality The system should be able to interact with other systems exhibiting
agency, in order to complete its own problem solving and to help others
with their activities.

Proactivity The system should not just act in response to the environment but
should be able to exhibit opportunistic, goal-directed behavior and take the
initiative where appropriate.

These characteristics are exhibited by most systems that are called agents, but
other authors have suggested further properties that, although not necessary to
call a system an agent, are strongly connected with many agent applications to-
day [Odell, 2000a]: adaptivity, mobility, rationality, unpredictability, credibility,
transparency and accountability, coordinativity, cooperativity, competitiveness,
robustness towards errors and incomplete data, and trustworthiness.

2.4.4 Architectures

Having discussed what agents are and why we might need them, we now turn to
the question of how to construct agents that have the required properties that
we expect from them. What software or hardware structures are appropriate, in
other words, what architecture should we use for the agents? There are three
different approaches to this question: reactive agents, who have a very tight
coupling of perception and action, deliberate agents, who tend to do a significant
amount of reasoning before acting, and hybrid agents, who fall between the first
two approaches.

Reactive Agents

Reactive agents have at most a very simple internal representation of the world.
Advocates of this approach argue that intelligence is a product of interaction
between the agent and its environment and that a direct mapping of perceptual
input to action output is preferable to abstract reasoning. A prominent example
of a reactive architecture is Brook’s subsumption architecture [Brooks, 1986].
A major problem with this approach is the difficulty of building large systems
that have enough flexibility to handle new situations which the designers did not
explicitly hand-code behavior for.

Deliberate Agents

Deliberate agents build a model of the world from their sensory input, reason
inside this model how best to reach their goals, create a plan as a result from this

2.5 Multiagent Systems 19

reasoning, and base their actions on this plan. An advantage of this approach
when compared to the reactive agents is that the range of behavior is far larger
than what has been explicitely coded into the system. Examples are Shoham’s
Agent-Oriented Programming [Shoham, 1993] and the BDI architecture [Bratman
et al., 1988]. BDI agents represent their state by three structures: their beliefs,
their desires, and their intentions. An agent’s belief is its model of the domain, its
desires order the possible states of the world according to the agent’s preferences,
and its intentions are the actions the agent has decided to do in order to satisfy its
desires. Major problems of agents with deliberate architectures are the time delay
between perception and action and the complexity of the world, which makes it
difficult to plan successfully outside a laboratory environment.

Hybrid Agents

Hybrid architectures have been proposed that combine reactive and deliberate
behavior to avoid the problems mentioned above. These architectures usually
consist of several subsystems, some of which function as deliberate components
that reason symbolically about the world and create plans, and others which re-
act quickly to the environment without complex processing. An example of such
a system architecture is INTERRAP [Miiller and Pischel, 1993]. This architec-
ture has been created for agents that are members of complex agent societies,
who need both to be able to react quickly to environmental changes as well as
to reason about other agents and coordinate their actions with them. Its plan-
ning component contains therefore an explicit coordinative planning layer that
complements the local planning layer and the behavior-based layer. The INTER-
RAP architecture will be introduced in more detail in the section on Holonic
Multiagent Systems.

2.5 Multiagent Systems

Multiagent systems (MAS) have historically been one of two parts of distributed
artificial intelligence, the other being distributed problem solving (DPS) |[Durfee
et al., 1989|. The understanding was that the agents in a DPS cooperate to solve
a computational problem. All have the same goal and the same interests, perhaps
because they were designed by the same source. In contrast, MAS can consist
of interacting entities that represent parties with different interests, interactions
include competition as well as cooperation. An example of a scenario where
agents cooperate with members of their own team and compete with those of
the other team is RoboCup [RoboCup, 2002]. Today, the terms have changed in
that distributed artificial intelligence is more or less synonymous with MAS, and
DPS has become a subfield of multiagent systems. Jennings et al. define MAS
as systems that have four properties [Jennings et al., 1998]:

20 Background and Related Work

Definition 3 (Multiagent System according to Jennigs, 1998)
A multiagent system is a system that has these four properties:

e cach agent has incomplete capabilities to solve a problem
e there is no global system control

e data is decentralized

e computation is asynchronous

Environments that support such systems usually provide an infrastructure speci-
fying communication and interaction protocols. A definition that emphasizes the
sociological aspect of MAS is given by Panzarasa and Jennings: “A MAS is a
social and cognitive entity, with a relatively identifiable boundary, that functions
on a relatively continuous basis through the coordination of loosely interdepen-
dent, cognitive and autonomous agents” [Panzarasa and Jennings, 2001]. We
will return to the two approaches to this field, the computational approach and
the social approach, in the first section where we motivate the use of multiagent
systems. The second section deals with the question of interaction between the
entities constitution such a system, presenting an overview over some mechanisms
used by agents to coordinate their activities to reach their goals. The third sec-
tions describes the problems agents have to deal with when relationships between
them go beyond short-term interactions and form the basis of coalitions. Section
four investigates the communication requirements that an agent platform needs
to fulfill to make all these interactions possible. Finally, the fifth section describes
the FIPA standard of agent communication, the standard that has been used in
the experimental system for evaluation of the concepts proposed by this thesis.

2.5.1 Motivation

According to Weifs, there are two main reasons which drive forces behind the
growth of the MAS paradigm in recent years: one related to the field of computers,
the other related to the field of sociology [Weif, 1999al.

The first has to do with the fact that modern computing platforms and infor-
mation environments are distributed, large, open, and heterogenous. Computers
have become closely connected both with each other and their users, they are
no longer stand-alone systems. MAS promise to provide technology that is more
suitable to the demands of the Internet, telecommunications, e-commerce, etc.

The second reason is the potential of MAS to model human societies and
test theories about human interactions. Examining the results of experiments
of social simulations is an increasingly popular way to investigate the validity of
assumptions on which social models are based.

2.5 Multiagent Systems 21

Distributed systems provide several advantages to computational applications
and human societies: they can enable the cooperation of entities whose knowl-
edge, capabilites or services are encapsulated for reasons like spatial separation
or privacy and intellectual ownership. The modular creation of structures pro-
vides the system with more flexibility, redundancy, modifiability, and extensi-
bility. It can also increase the system’s speed and efficiency, as central units in
non-distributed systems often present a bottleneck to the system’s performance.

2.5.2 Interaction

Agents may need to coordinate their actions in cooperative as well as in com-
petitive settings. Parunak et al. see as the basis for analyzing the interactions
of agents the correlation, which is defined as non-zero joint information over a
population of agents |[Parunak and Brueckner, 2002|. This measure is a purely
behavioral notion, taking into account only the actions of agents. A derived
measure that emphasizes information is coordination, which is correlation with a
focus on the information flow that enables it. If the agent’s inner states are taken
into account, the system can be analyzed in terms of cooperation, the correlation
modulated by the intent of individual agents. The authors also define congruence
as the degree to which an agent system aligns with a system-level goal.

The above mentioned information flow that is the basis of coordination be-
tween agents can be interpreted as negotiations. The result of negotiations is a
promise of the agents involved to try to reach a certain goal state. Cohen and
Levesque called this promise commitment and defined it as as relative and per-
sistent goal [Cohen and Levesque, 1987|. Agents want other agents to commit if
they want to delegate a task to others (which means that the other agent promises
to do the task delegated to him) or if they want others to adopt some of their
own goals [Castelfranchi and Falcone, 1998].

There are several mechanisms to delegate via negotiation, which mechanism
is most suitable for a given situation depends on the scenario. A common sce-
nario that is applicable to many settings like e-commerce on the Internet or task
assignment and resource allocation is the market, where some agents are buyers,
others are sellers. Guttman and Maes have proposed a classification scheme for
such scenarios (Figure 2.3) [Guttman and Maes, 1998].

In this thesis, we are interested in applying the market framework to a system
for task assignment. Some agents have a task they need to be done by other agents
and they want to delegate their task to the agents who can do it cheapest. They
can find those agents by starting auctions, as the market framework suggests, or
they can use a contract net protocol that has been developed for task assignments.
We defer a discussion of the contract net protocol to chapter Four, where it is
described in more detail in the context of developing the protocols used for this
thesis. Here we will restrict ourselves to giving a short overview of auctions.

Some of the most common auction mechanisms are the English auction, the

22 Background and Related Work

BUYERS
ONE MANY

1
‘

ONE NEGOTIATION | AUCTION
1
‘

SELLERS ~ feeeoooooooo R

‘

REVERSE ' MARKETS
MANY AUCTION !
‘
‘
:

Figure 2.3: Market framework [Guttman and Maes, 1998].

Dutch auction, and the Vickrey auction. In the English auction, each bidder is
free to raise his bid. If no more bidder wants to raise, the auction ends with the
highest bidder winning the item at the price of his last bid. In the Dutch auction,
the auctioneer continuously lowers the price until a bidder takes the item at the
current price. Finally, in the Vickrey auction each bidder submits a bid without
knowing the others’ bids. The highest bidder wins the item at the highest losing
price.

2.5.3 Coalitions

The last section dealt with the problem of coordinating actions with other agents
for a single task or problem. Agents can increase their efficiency or profit beyond
such short-term cooperations by forming coalitions with other agents. Coalitions
are characterized by long-term involvement; agents commit not to single actions
but to participation in solving a whole class of problems or tasks. This is a
different problem from allocating tasks, because the value of having an agent
participate in a coalition might be more difficult to assess than the value of a
single service or resource. Sandholm has identified three questions that need to
be tackled in systems forming coalitions: [Sandholm, 1996]

Coalition Structure Generation Which agents form a coalition together?
Sandholm examines the case of exhaustive and disjoint coalitions. In such
scenarios, agents coordinate their actions only with agents inside their own
coalition, but not with other coalitions. We do not require this condition
in our system, but Sandholm’s questions still apply.

Solving the Optimization Problem of each Coalition Given a coalition
consisting of a set of agents and a task to be solved, how is the task to
be divided among the members of the coalition such that it can be com-
pleted successfully and most efficiently? In most settings, efficiently means
with the greatest profit, measured in monetary value.

2.5 Multiagent Systems 23

Divide the Profit If a task has been completed and the coalition has received
a profit from it, how is the profit to be distributed among its agents? This
question has a direct bearing on the other two, because when forming coali-
tions, agents consider the expected cost and income from participating in
a proposed coalition.

Coalition formation has been widely studied (see Sandholm’s dissertation for
references [Sandholm, 1996]), but mostly under the condition that agents are
rational and have complete information about the system. In our setting, agents
have only very limited knowledge of other agents, so most mechanisms of finding
the best coalitions cannot be applied in their full form. We will describe how
agents find other agents to form long-term relationships with later in chapter
Four.

2.5.4 Communication

One of the motivations for using agent technology mentioned in this chapter was
that agents facilitate the interoperability between software systems built by dif-
ferent parties. However, this interoperability requires that the agents share the
same means of communication, a common standard for information exchange.
In other words, there must be a standard language for agents. There have been
several efforts to design an agent communication language (ACL) that enables
agents from different designers and on different platforms to exchange informa-
tion, without restricting the type of content of this information. This is done by
building ACLs as wrapper languages which implement a knowledge-level proto-
col that is unaware of the choice of content language and ontology specification
mechanism. Most ACLs today are inspired by the linguistic theory of speech acts
developed by Searle [Searle, 1969].

Speech act theory provides language primitives that are categorized depending
on, among other things, the intent of the speaker and the effect on the listener. An
example of a category of speech acts are commissives, whose meaning is to commit,
the speaker to a future course of action. Adapting a human knowledge-level
communication protocol like speech acts to agent communication was motivated
by the similarity of software agent to real agents and by the possibility of real
humans taking the role of agents in agent systems. Two popular standard ACLs
based on speech act theory are KQML [Finin et al., 1994] and FIPA ACL [FIPA,
2002].

KQML, which stands for Knowledge Query and Manipulation Language, is a
language and set of conventions that support network programming specifically
for knowledge-based systems and agents. FIPA ACL, with FIPA standing for
Foundation for Intelligent Physical Agents, is a newer ACL which differs from
KQML mainly in that its semantics does not allow agents to directly manipulate
the knowledge base of other agents (they can no longer insert facts into oth-

24 Background and Related Work

ers’ databases by sending a performative “tell(Agent5, Fact3)”), and that many
functions of the wrapper language have been delegated to the content language.

Both ACLs provide three levels of protocol: the communication level, the
message level, and the content level. The communication level specifies informa-
tion like sender, receiver, content language, and ontology. This makes it possible
to route the message to the right recipient and lets him process it with the right
syntax rules (specified by the content language) and domain knowledge (specified
by the ontology). The message level contains the kind of performative that tells
the agent whether the message is a request, query, promise, etc. Finally, the
content level contains the specific facts requested or promised.

The two ACLs also have in common the structuring of interactions in pro-
tocols. Protocols are patterns of interaction that are formally defined and ab-
stracted from any particular sequence of execution steps. They specify what
performatives are allowed and in what order they must occur. We will give an
example of an interaction protocol in the next section, where we describe the
FIPA standard in more detail, which is the standard our implementation is based
upon.

2.5.5 FIPA

FIPA stands for Foundation for Intelligent Physical Agents, but the initial vision
of physical agents has been replaced by the focus on software agents, commu-
nication and interoperability between agents, specification of external behavior,
and use in heterogenous environments. This shift is reflected in the new in-official
meaning of the acronym: Foundation for InteroPerable Agents. FIPA is a joint ef-
fort of several organizations and companies started in 1995 to provide a standard
for agent communication that allows interoperability of agents based on differ-
ent platforms. The FIPA organization publishes specifications that prescribe the
interfaces that agents must implement in order to operate on FIPA-compliant
agent systems. The specifications provide standards in the areas of agent com-
munication, agent management, and agent-software integration.

Agent Communication

FIPA has specified the agent communication language FIPA ACL to support
the negotiation, cooperation and information exchange between agents. The
structure of a FIPA ACL message consists of five levels:

Protocol The protocol defines the social rules for structuring the communication
between agents. An example is the contract net protocol for task assignment
described in the chapter Specification.

Communicative Act The communicative act defines the performative of the
message, for example request, query, or agree.

2.5 Multiagent Systems 25

(inform
:sender (agent-identifier :name i)
:receiver (set (agent—identifier : name j)
:content
"weather (today, raining)"
:language Prolog)

Figure 2.4: Example of a FIPA ACL message.

Messaging This level contains meta-information about the message including
the identity of the sending agent and the receiving agent.

Content Language This specifies the gammer and semantics of the language
the message’s content is expressed in, for example, LISP.

Ontology The ontology defines the vocabulary and meaning of the terms and
concepts used in the content.

Figure 2.4 gives an example of a FIPA ACL message by which agent ¢ informs
agent j that it is raining today.

Conversations and dialogues between agents are usually structured according
to predefined patterns of messages, the interaction protocols. This facilitates the
design of agents in that it allows the anticipation of the type of next message
in a conversation. Figure 4.7 shows the Contract Net Protocol used for task
assignment.

Agent designers can build their own protocols or even let their agents commu-
nicate without any protocols at all, but for the benefit of better interoperability
they are encouraged to use the standard protocols.

Agent Management

The agent management specified by FIPA consists of the agent management sys-
tem (AMS), the directory facilitator (DF), and the agent communication channel
(ACC).

The agent management system keeps an index for all agents currently regis-
tered on its platform. This index includes, among other things, the identifier of
its current platform and its identifier within that platform. The AMS is actu-
ally an agent that supervises the platform by controlling the creation, deletion,
registration of agents and their migration to other platforms.

The directory facilitator is another agent that provides a “yellow pages” service
to other agents. Agents may register their services at the DF or query the DF
for agents providing specific services.

26 Background and Related Work

The agent communication channel is an agent that routes messages between
agents on the same platform and between its platform and other platforms. The
minimum requirement for FIPA compliance is the support of the Internet inter-
orb protocol (IIOP) between different agent platforms.

Agent-Software Integration

This part of the FIPA specification describes a common way to encapsulate non-
agent software and allow agents to access it as agents. This is done by creating

wrapper agents that act as interface between the software and the agents on the
FIPA platform.

2.6 Holonic Multiagent Systems

In this section we apply the concept of holons to agent technology. There have
been proposals to merge ideas from holonic manufacturing systems and mul-
tiagent systems [Bussmann, 1998, Fischer, 1999a]. Holonic multiagent systems
(HMAS) can be seen as the realization of this idea. We first outline the notion of
a holonic agent, then describe systems consisting of such entities, continue with
an architecture proposed for implementation of holonic agents, and finally give
an example for an application using holonic multiagent systems.

2.6.1 Holonic Agents

A holonic agent consists of a group of several agents that together retain the
properties of a single agent |C. Gerber, 1999|. These agents can be holons them-
selves, in which case they are called subholons of the original holon. The concept
of holon can therefore be applied to build recursive structures in agent groups.
Holonic agents have, like normal agents, a unique identification that makes it pos-
sible to communicate with them with the normal agent communication methods,
for example protocols [Fischer, 1999b|. Holonic agents need to be addressable as
single agents. One way of realizing this is to let all communication to the outside
run through one of the agents forming the holon. Such an agent is called head of
the holon or mediator |Ulieru et al., 2001]. The binding force that keeps agents
in a holon together can be understood as commitments [Singh, 1997]. The agents
stay together to cooperate and work towards a common goal. Holons can there-
fore be seen as the recursive application of the concept of coalitions described in
the section on multiagent systems.

2.6.2 Holonic Structures in Agent Systems

As mentioned above, agents form holons by ensuring cooperation via commit-
ments. By committing, they limit their possible future actions and therefore give

2.6 Holonic Multiagent Systems 27

single agents federation merged hybrid

Figure 2.5: Different forms of holonic agents [C. Gerber, 1999].

up part of their autonomy. The degree to which they give up autonomy is not
set in advance but depends on the circumstances and is subject to negotiation
between the agents participating in the holon [Schillo et al., 2001b|. The least
sacrifice of autonomy can be seen in holons forming a loose federation of agents
(see Figure 2.5). The long-term commitment in this form is actually so low that
agents need to negotiate their coordination on a case-by-case basis. The federa-
tion is at one end of the autonomy spectrum and does not differ significantly from
conventional multiagent systems. At the other end of the spectrum, agents can
give up all of their autonomy and merge into a single agent. How this merging
is realized depends on the agents’ architecture. In BDI agents, for example, the
belief of the resulting holon is the union of the beliefs of the subholons, provided
consistency is guaranteed. The same applies to its goals. Between the two ex-
tremes, there can be hybrid forms that let agents retain part of their autonomy,
but not all of it. This thesis proposes a number of hybrid forms motivated by
business organizational structures found in human societies and investigates their
properties in self-organizing scenarios.

2.6.3 Architecture for Holonic Agents

Gerber et al. propose to implement holonic agents in Miiller’s three-layered IN-
TERRAP architecture [C. Gerber, 1999|. As has been described in the section
on software agents, INTERRAP is a hybrid architecture that combines proper-
ties of reactive and deliberate agents. The reactive component is realized by the
behavior-based layer (BBL), which is responsible for the basic behaviors of the
agent and its immediate reactions to simple stimuli from the environment within
short time frames. The deliberate component is divided into the local planning
layer (LPL) and the cooperative planning layer (CPL). The agent’s knowledge
base is structured similarly into three layers to correspond with the three con-
trol component layers just described. The LPL is responsible for planning tasks
that only concern the agent itself and does not take into account interactions
with other agents, which are handled by the CPL. The CPL contains the holonic

28 Background and Related Work

Cooperative Planning |, g CO(Epergtilon KnOV\)/Iedge 0
Laver (CPL i social context
ver () Joint Goals / Plans f
g
g Local Planning Layer WEanhinalknowideae <—(
= (LPL) glayer . . ~| ' (mental context) 8
2 Local Goals / Plans <
= o
8 s
- : World Model Q
S Behavior-Based | = -| | (situational context) T
2 Layer (BBL) Y Patterns of Behavior
Acting Communication Perception
WORLD INTERFACE (WIF)

Figure 2.6: INTERRAP architecture [C. Gerber, 1999|.

structure of the agent society, representing it as part of a directed graph of point-
ers, the complete graph being maintained in a distributed fashion by the CPLs
of the member agents. The CPL is also responsible for coordinating the commu-
nication with other agents, either within the holon or between holons. The CPL
of the head of a holon contains the information about the holon’s resources and
configurations, so it can take over administrative and representative functions. If
the member agents of a holon are implemented on the same platform, they can
share computational structures to increase the system’s performance.

2.6.4 Example Application

Holonic multiagent systems have been applied in the area of logistics. The
TELETRUCK system is an online scheduling system for truck fleets developed
at the DFKI [Biirckert et al., 1998|. The transportation units in this system are
divided into the categories drivers, trucks, trailers, and containers. Each unit
can have its own objectives and is modeled as a single agent. In order to form
a compound capable of performing a transportation task, a driver, a truck, a
trailer, and containers can build a holon to form a complete vehicle. The dif-
ferent vehicles communicate via GPS with the Shipping Company, which uses a
HMAS to manage the fleet schedules.

Chapter 3

Problem Description

In this chapter we describe the areas of research to which this thesis is contribut-
ing. The first section Problem Statement delineates the setting of the proposed
concepts. In Research Questions we enumerate the three major research goals of
this thesis. Finally, in Applications, we give a few examples of where the research
results of this thesis might find application in real-world systems.

3.1 Problem Statement

This thesis is a contribution to the field of socionics. Of the three tenets of
socionics, namely sociological reference (the use of computer models in sociologi-
cal theorizing), computational reference (the development of new techniques and
methods in distributed artificial intelligence and investigation of the role of soci-
ological foundations in the construction of large-scale multiagent systems), and
praxis reference (the examination of the social impact of hybrid artificial societies
composed of both human beings and artificial agents), the thesis concentrates on
the second tenet, computational reference. We are interested in the application
of sociological models to multiagent systems.

The central setting for this work is a market of two kinds of agents, customers
and providers. The customer agents have tasks they need to be done by provider
agents. These tasks can be complex and may go beyond the capacities of any
single agent, so that they require the collaboration of several providers. The cus-
tomers try to find providers who can complete the tasks by auction mechanisms.
The agents in this setting are self-interested entities that do not necessarily share
a common goal. They can be designed and owned by different human parties,
which limits the possibilities of global control of the task assignment scenario.
Another important condition is that the market is not totally predictable; the
provider agents do not know what the future orders of the customers will be, nor
can they predict how the system will behave as a consequence of local interactions.

In order to find out how efficient this market works and to measure the changes

30 Problem Description

in performance that result from application of sociological concepts, we define a
number of performance measures. These performance measures tell us what prop-
erties the system under examination has and which change in agent configuration
and behavior has desirable consequences. Some of these performance measures
are global measures, they measure the performance of the system as a whole,
without looking at the level of individual agents. These measures are the number
of messages sent in the system and the rate of failed task assignments. A system
that uses few messages exchanged between agents for assigning the same number
of tasks is considered to be more efficient than one that uses many messages.
Similarly, a system is considered more efficient if it succeeds in assigning a larger
number of tasks. The local performance measures are the profit per provider
agent and the net income of groups of agents. These local measures evaluate the
consequences of different actions from the point of view of single provider agents,
and are therefore a valuable guideline for agent behavior.

If the system contains many agents or the tasks to be assigned require the col-
laboration of many providers, assigning the tasks with auction systems becomes
increasingly complex and methods to improve the performance of the system
as measured by the performance measures described above become more impor-
tant. If the same type of task needs to be assigned several times or some parts of
changing tasks are constant, the system might be more efficient if this repeating
structure on the demand side was reflected by a similar repeating structure on
the provider side, that is, if providers who are successful at completing a task
or subtask together form relationships that facilitate long-term teamwork. This
provider grouping can be formalized by the concept of organizations. Organiza-
tions are social structures that are nothing else but routines of conflict resolution
resulting from previously resolved problems or conflicts [Gasser, 1991]. They
institutionalize anticipated coordination.

Organizations can increase the efficiency of agents under certain conditions on
the demand side. If these conditions change, organizations can actually worsen
the performance of the system or of individual agents. This raises the problem of
how to decide which agents should form what kind of organization. Pre-designing
the organizational structure is often not possible because the designer does not
know which demand will arise during run-time. We therefore investigate how the
agents can decide themselves at run-time how to organize in the light of a given
customer demand. They have to decide when to build new organizations, with
whom to build them, and how to adapt them once they had a chance to learn
about the efficieny of the organization.

3.2 Research Questions

In order to provide a contribution to the field of socionics with the concepts
described above, three goals need to be met: we need to specify a number of

3.2 Research Questions 31

organizational forms and a mechanism for self-organization, we need to develop
new protocols for the communication, and we need to implement a testbed and
evaluate the effects of organizations and self-organization on the performance of
the multiagent system.

3.2.1 Specification of Organizational Forms and a Mecha-
nism for Self-organization

In order to apply sociological theories and models about organizations to mul-
tiagent systems, we need to select a number of organizational forms and give a
detailed description of each that specifies the roles of the organization’s mem-
ber agents. The computational formalism we use to implement organizations is
the concept of holons. Agents in a holon can have one of two roles: head or
body agent. Each role has a number of rules that the agent assuming the role
has to follow to ensure the efficient working of the organization. We provide a
specification of the rules in the ADICO grammar, a sociological formalism for
describing the rules and norms of organizations that is on the one hand flexible
enough to express the rules required in our implementation and allow possible
future enhancements, and on the other hand precise enough to be applicable in
a computational system.

The ADICO grammar has to specify the allowed and required behavior of
agents depending on their role in the organization. For example, the head of
the organizational form cooperation has to start a new internal auction for each
order that matches the product the cooperation was built for. Another thing that
needs to be specified is the profit distribution, which details how the income an
organization receives is divided among its members.

Once the organizational forms are specified, we need a mechanism for build-
ing new organizations and adapting existing ones to changing circumstances.
The decisions must be made by the agents themselves on the basis of information
available to them, they are local decisions. The creation and change of organi-
zations always involves several agents and existing organizations might restrict
the creation and change options of other organizations. For example, some or-
ganizational forms do not allow their members to be members of certain other
organizations at the same time. Agents need to have a way of coordinating the
creation and updating process taking conflicting requirements into account.

3.2.2 Development of Protocols

We structure the agent communication in our market scenario with a number
of protocols. These protocols are based on the FIPA standard, described in the
second chapter. The protocols already existing in the standard do not meet all of
our requirements, as they were developed with single agents in mind and are not

32 Problem Description

optimal when applied to organizations. We therefore have to develop a number
of extensions to existing protocols for inter- and intra-organizational communi-
cation. Part of this communication is auction related, like the assigning of tasks
to other agents. Another part of it is self-organization related, for example the
process of coordinating the change of an existing organization. Most new pro-
tocols developed in this thesis are not completely new ones but rather modify
standard protocols, most notably the contract net protocol. All new protocols
conform to the FIPA standard in that they only use performatives defined in the
standard and are implementable on all agents compatible with the standard. The
last point is important to ensure the extensibility of the current work and the
interoperability with other projects.

3.2.3 Experimental Evaluation

It is not self-evident that applying sociological models of organizations in the
form suggested here is really advantageous for the performance of multiagent
systems. The third goal of this thesis is therefore to implement a working market
scenario based on the proposed setting where the provider agents can be mem-
bers of organizations and have the capability of self-organization. The research
on this implementation includes varying the organization parameters of this im-
plementation and observing the effects on the defined performance measures.

The testbed for the thesis has been implemented twice, once in Java and once
in C++. The Java implementation was made to conform to the wide-spread prac-
tice of using Java for multiagent systems and to facilitate the implementation of
the concepts used in the testbed in other systems. At the start of the exper-
iments, however, it turned out that the Java implementation, which used the
freely available FTPA-OS library as basic architecture for agent communication,
is not fast enough. The speed and memory requirements of our scenarios limited
the number of experiments that could be done in the available time below the
limit for statistical significance. We therefore developed a second implementation,
this time in C++. This implementation is significantly faster and allows more
experiments to be done. Since the implementations do not differ in the auction
mechanisms and agent reasoning, the theoretical results should be independent
of the implementation.

Our experimental plan is structured around a number of hypotheses that
relate organizational variables manipulated by the designer to the performance
measures. The hypotheses reflect the expectation that organizations and self-
organization are advantageous for the performance of multiagent systems.

The hypotheses are:

1. In scenarios where all organizations are of the same form (homogenous
scenarios), the rate of failed orders in the system will be lower for more
hierarchically oriented organizational forms.

3.3 Applications 33

2. In homogenous scenarios, the number of messages in the system will be
lower for more hierarchically oriented organizational forms.

3. In homogenous scenarios, a stricter message limit (number of calls for pro-
posals allowed to be sent per auction initiator) will increase the rate of
failed orders in scenarios with single agents more than in scenarios with
other organizational forms.

4. In scenarios where different organizational forms can coexist (heterogenous
scenarios), the more hierarchically oriented organizational forms will have
a higher net income.

5. In heterogenous scenarios, the presence of single agents will lower the net
income of other organizational forms.

6. In heterogenous scenarios, a stricter message limit will reduce the net in-
come of single agents more than that of other organizational forms.

7. In scenarios where agents start out as single agents and can self-organize
to form new organizations, the rate of failed orders of the system will be
lower than if self-organization is not allowed.

8. In self-organization scenarios where agents start out as single agents, the
number of messages per system will be lower than if self-organization is not
allowed.

9. In self-organization scenarios where agents start out as single agents, the
profit per agent will be higher than if self-organization is not allowed.

3.3 Applications

The concepts of organizations and self-organization as proposed in this thesis
have potential applications in scenarios where many agents interact, the tasks to
be assigned require the collaboration of several agents, and where the tasks have
repetitive structures or substructures. The initial motivation for this work was
the sector of transportation and logistics. The tasks in this scenario consist of
finding a transportation route for a freight from a given starting point to a given
destination. Since the route might span a large territory, the transport might
require the services of several transportation firms. For example, Company 1
might be responsible for transporting the freight from A to B, and Company
2 for getting it from B to C. Several transportation firms might be available
for providing the transporting along a given sub-route. The scenario therefore
contains both competition and cooperation opportunities. Transportation firms
whose home territories are adjacent to each other could form an organization

34 Problem Description

whose home territory is the two territories combined. This organization might be
more efficient than if the firms had to negotiate each new transportation order
anew with each other.

Another field for potential applications of the proposed concepts is the Inter-
net. For example, another Diplomarbeit at our faculty at the time of this writing
investigates the use of multiagent systems in distributed spam filtering [Metzger
et al., 2002|. Agents share knowledge about the classification of mails as spam or
no-spam. It is conceivable that agents owned by users who share a certain affili-
ation could be made to work better together if they formed an organization. For
example, each employee of the DFKI could have a spam filtering agent, and these
agents could form an organization. Members of the same organization could trust
each other more and give each other access to more information and services. A
classification originating from an organization partner is potentially more reliable
than one originating from an external agent. It is also possible that organizations
are formed not on the basis of their users working in the same company, but on
their users having the same mail preferences. The head agent of such a spam fil-
tering organization would be responsible for filtering the classification proposals
from outside, thus its body agents could save computational resources.

Chapter 4

Specification

This chapter describes the requirements that our system needs to meet to answer
the questions posed in the last chapter. Our system is based on a market scenario
where customers try to assign complex tasks to providers. The performance of
the system can be measured in several ways by monitoring the values of variables
during the simulation. Provider agents can form organizations that are motivated
by examples of business models in human societies. This organizational structure
can be set to change depending on the local decisions of the providers. The
market scenario is described in more detail in the first section. The second section
specifies the performance measures we have selected to evaluate the concepts
proposed in this thesis. The third section formalizes the multiagent equivalents
of the organizational forms introduced in the second chapter. The specficiation
of the implementation for self-organization are given in the fifth section. Finally,
section Six contains the protocols used by these organizational forms for inter-
and intraorganizational communication.

4.1 Market Scenario

The market consists of two groups of agents: customers and providers. Time is
modeled as discrete rounds. Each round, customers have the option to announce
a task that can consist of several subtasks and whose deadline can be the current
or a future round. Elementary tasks, those that do not consist of subtasks, are
termed by single letters: A, B, etc. They can be combined to form composed
orders, termed by strings whose letters specify the subtasks they are composed
of. For example, a task ABC can be completed by completing tasks A, B, and
C. Each task has a deadline that specifies the maximum number of rounds the
completion of the task may take.

Each new round, the customers announce their tasks to the providers by
initiating a new auction for each task. An auction is started by sending orders to
a number of provider agents asking for completion of the task. The round ends

36 Specification

when all auctions have terminated. How providers react to calls for proposals
sent to them depends on whether they have formed an organization with other
providers or not and on the form of this organization. For example, a head of
a strategic network who receives an order AB might ask two of its subordinate
agents whether they can complete orders A and B, respectively.

Customers do only interact with providers, but not with each other. Providers,
on the other hand, are free to interact with other providers. When starting
new auctions, not all providers may be sent a call for proposals. There is a
message limit that limits the number of providers that may be asked per auction.
Unlimited auctions are not realistic, especially if the number of agents becomes
significantly large. The height of this message limit is an independent variable
that will be varied in the experiments. Since not all providers can be asked,
agents starting an auction need to choose whom to include in the auction. They
do this by assigning a value to each provider and asking the providers with the
highest value. The value they compute is dependent on the specific task of the
auction: the value is the sum of the volumes of elementary resource types they
have assigned to that agent in the past, summed up over all elementary resource
types in the order of the auction they want to start. For example, if they want to
send call for proposals for type AB, the value of a provider who they have assigned
5 units of type A and 2 units of type B to in total in the previous rounds is 7.

Agents who process an order as single agents and not as members of an
organization check how much of the order they can do themselves. If they do not
have the resources for all of the types in the order, they start a new auction asking
other providers to complete the parts of the task they cannot do by themselves.
They start only one auction for each order, that is, if the agent received an
order ABC and can only do A, it will start an auction asking for BC. It will not
start two auctions one asking for A and the other for B, because this splitting
of orders into their elementary types would make the system less efficient, as
the system would no longer benefit from the advantage of organizations being
able to efficiently process complex orders. Agents do not start new auctions if
they cannot complete any part of the task. If they did, the round would not be
guaranteed to terminate.

The providers are profit oriented. In the case of a single agent, the price it
asks for its resources is the cost of the resource multiplied by an agent-specific
profit parameter. In organizations, the profit is computed dependent on the orga-
nizational form. Section 4.3 describes the profit distribution for all implemented
organizational forms.

4.2 Performance Measures

In order to find out to what extent the application of sociological concepts as we
propose them are advantageous to multiagent systems, we need a way to measure

4.2 Performance Measures 37

the value these concepts add to the system. Value is measured by measuring the
performance of the system. We used four performance measures to evaluate
aspects of behavior: rate of failed orders, profit per provider, net income per
organizational form, and number of messages.

4.2.1 Rate of Failed Orders

One aspect we are interested in is how many of the tasks assignments succeed.
This measure is probably of little value to provider agents, but it might be in
the interest of the customers or the system user to have as few tasks assignments
fail as possible. Multiagent systems that assign tasks by applying auction or
contract-net mechanisms do not always find solutions that could in principle be
found by a brute-force approach that checks all possible assignment configura-
tions. Examples of such failures are discussed in section 6.1 The reason they
are often preferable despite their incompleteness is that the brute-force approach
has prohibitive computational demands and requires the centralization of all in-
formation about the system. Auction mechanisms can find solutions when the
centralized approach fails because not enough computational resources are avail-
able or a centralization of information is not possible due to practical reasons or
issues of privacy. One motivation behind the idea of using social organizations in
multiagent systems is the hope that an appropriate organizational structure will
decrease the number of failed task assignments if the system is in principle able
to complete the task.

4.2.2 Profit per Provider

The rate of failed orders is a performance measure that is of interest to customers
and perhaps the system user, but we should also consider the viewpoint of the
provider agents. It is the providers who decide when to form what kind of organi-
zation, and the most important criterion they should base their decision on is the
difference in profit that they receive. The second performance measure, profit per
provider, therefore looks at profit on the provider side. This measure will be of
interest in scenarios where self-organization is allowed, as we expect that agents
who dynamically change their grouping based on the market situation increase
their profit, as opposed to agents who do not self-organize.

4.2.3 Net Income per Organizational Form

The performance measure “net income per organizational form” looks at the in-
come of all organizations of a specific kind, so we can measure how much money
goes to what organizational form. This performance measure will be of interest in
scenarios where different organizational forms exist at the same time and compete

38 Specification

with each other. If the number of organizations of each form is equal, organiza-
tional forms with higher net income can be interpreted to be more successful in
competitive scenarios.

4.2.4 Number of Messages

Customers want to get their tasks assigned, providers want to maximize their
profit; both might prefer to reach their goals with as little communication as
possible, if communication is costly in terms of computational resources. In our
FIPA-OS based Java implementation, for example, the sending, receiving, and
routing of messages turned out to be the major bottleneck for the rate at which
the rounds in the market could be simulated. Even if computational performance
is not an issue, the agents or the system designer might be interested in keeping
the number of messages necessary for assigning a task as low as possible, for
example if agents have to pay for sending messages. This could be the case in
multiagent systems that are modeled after real organizations and are used to
test theories about the working of those organizations. Our final performance
measure is therefore the number of messages that need to be exchanged between
the agents in order to assign tasks. In general, the more hierarchical oriented an
organization is, the fewer intra-organizational messages it needs to send to process
an order, so we expect scenarios where agents increase the level of organization
by self-organizing in order to adapt to the market situation to show a decrease
in the number of total messages sent in the system.

4.3 Selected Organizational Forms

The six forms of business networks presented in section 2.1.3 have been selected
to test their suitability for market-based multiagent systems. These forms can
be ordered on a scale from maximum to minimum autonomy of the agents. This
section describes the models used to implement the network forms in order of
decreasing autonomy. For the sake of simplicity, at most three layers are depicted
in the figures: customers, providers, and, where appropriate, intermediate agents.

Each of the six organizational forms used in the simulation is modeled with
a set of rules stating what the organization’s member agents are allowed to do,
what they are obliged to do, and what they must not do. Each rule is given in
its linguistic and ADICO form. We also describe the profit distribution of the
organizational form, but for simplicity only in linguistic form, not in the ADICO
grammar.

4.3 Selected Organizational Forms 39

4.3.1 General Rules

The following rules apply always and have no reference to a specific organizational
form. Most organizational forms are product-specific, which means that member
agents receiving a call for proposal (cfp) only process the order with the rules
of that organization if the order’s type corresponds to the organization’s specific
type determined at the time of its creation. If the order is of a different type,
the membership in the organization does not have any effect on the processing
of the order. Product-specificity has been introduced because there needs to be
a way for agents who are members of several organizations to tell which of their
organizations is responsible for an incoming order. Membership in organizations
created for the same order are not allowed, so it is always clear how to process
an order.

All customers may make cfps to providers.
A | all customers

D | permitted

I | make cfps to providers

e Providers must not be members of several product-specific organizations if
these organization were created for the same type.

all providers

forbidden

be member of more than one organization

organizations have been created for the same type

Q|| g »=

e Providers must process orders that match the type of a product-specific
organization of which they are a member with the rules of that organization.

all providers

obliged

process order as organization

order is specific to that orgization

Q|| g =

e Providers that process an order as head of an organization can start an
external auction asking for parts of the order only for the resources the
organization cannot do by itself and if the organization can do at least part
of the original order.

A | heads of an organization

D | forbidden

I | delegate to outside agents the complete order

or subtypes that could be done internally

40 Specification

Customers

Providers

Figure 4.1: Task assignment in scenarios with single agents.

4.3.2 Single Agents

In this form of interaction, shown in figure 4.1, providers act as single agents. As
was mentioned before, we forbid the delegation of the entire incoming order to
prevent non-terminating rounds. Another limitation is that they can only start
one auction for each incoming order, because otherwise they might start a new
auction for each elementary type and diminish the efficiency of organizations that
have advantages in processing composed, non-elementary orders.

e All providers acting as single agents may make cpfs to other providers, but
they must not delegate all of a task.

all providers processing an order as single agents

permitted

delegate part of the order to other agents by starting a single auction

Q|| g =

the delegated order must not contain all of the types of the original order

4.3.3 Virtual Enterprise

A virtual enterprise as shown in Figure 4.2 consists of provider agents with equal
rights, there is no head agent designated in advance. A virtual enterprise is
product-specific. Each member agent may accept cfps, but must start a new
internal auction for each of its subtypes among its partners. This member agent
becomes the head of the virtual enterprise for this specific order. This is the
only organizational form that has order-specific heads. There is no specific profit
distribution other than the normal economic exchange via the internal auctions.

e Providers that must process a cfp as virtual enterprise must start an internal
auction for each of its subtypes among their virtual enterprise partners.
A | providers processing an order as virtual enterprise

D | obliged
I | start an internal auction for each subtype

4.3 Selected Organizational Forms 41

Customers

Virtual Enterprise

Figure 4.2: Task assignment in scenarios with a virtual enterprise.

4.3.4 Cooperation

Cooperations consist of a head agent and body agents. At the time of the creation
of the cooperation, the member agents elect one of them to be the head of the
organization. Cooperations are product-specific. If an incoming order matches
the product of the cooperation, the rules applying to the receiving agent depend
on whether it is the head or a body agent. Body agents may not directly accept
cfps from outside the cooperation, but must bounce them. Bouncing means that
they refuse the order, but send the name of their head inside the refusal message
so the sender of the order can resend the cfp to the head instead. The semantics
of this bouncing is that the head of the organization is the one responsible for the
organization’s interaction to the outside and all interorganizational communica-
tion must be channeled through him. If the cooperation head receives an order
matching the cooperation type, it has to start an internal auction for each of its
subtypes, just as the virtual enterprise head.

The head distributes the profit for orders completed by the cooperation ac-
cording to a fixed ratio determined at the creation of the organization. Members
of a cooperation may give gifts to each other. For the body agent, giving a
gift means demanding a lower price for a good than the price that was initially
agreed on; for the head, it means paying more than the agreed-on price. Agents
remember their gift history with other agents in their models of these agents.

e Agents processing an external order as cooperation bodies must bounce
the order.

42 Specification

Customer

Head Agents

Body Agents

Cooperation A Cooperation B

Figure 4.3: Task assigment in scenarios with cooperations.

Customers

Head Agents

Body Agents

Strategic Network A Strategic Network B

Figure 4.4: Task assignment in scenarios with strategic networks.

A | Agents processing an external order as cooperation bodies

D | obliged

I | refuse the order, sending the name of the head inside the refusal message

e Agents processing an order as cooperation heads must start an internal
auction for each of its subtypes among their body agents.
A | agents processing an order as cooperation heads
D | obliged

I | start an internal auction for each subtype

4.3.5 Strategic Network

Just like cooperations, strategic networks (figure 4.4) consist of a head and body
agents. Body agents again have to bounce incoming external orders. The differ-
ence between these forms is that heads in strategic networks know about their

4.3 Selected Organizational Forms 43

Customer

Head Agents

Body Agents

Group A Group B

Figure 4.5: Task assignment in scenarios with groups.

body agents’ schedules and resources, and can instruct them to do a task at a
given time. Strategic networks are product-specific, so multiple memberships are
allowed. Since multiple memberships can result in a head not being up-to-date
about a body agent’s resource allocation, the underlying strategic network au-
thority protocol contains a confirmation step for the case that the body agent
has processed an order outside the strategic network and his resource allocation
has changed since he last informed the head agent about it. Body agents have to
inform their heads about changes in resource allocation as soon as possible.

The profit distribution happens according to a fixed ratio, as in the coopera-
tion. There is no gift giving among the members of a strategic network.

e Agents processing an external order as strategic network bodies must
bounce the order.

A | Agents processing an external order as strategic network bodies

D | obliged

I | refuse the order, sending the name of the head inside the refusal message

e Body agents must accept orders from their heads, if possible.
all strategic network body agents

obliged

accept task ordered by a strategic network head agent
can allocate enough resources for task

Q|| g =

e Body agents must keep their strategic network heads up to date about

their available resources.
A | all strategic network body agents

D | obliged
I | keep all their strategic network heads up to date about their resources

44 Specification

4.3.6 Group

In contrast to strategic networks, groups (figure 4.5) are not product-specific. An
agent who is a member of a group is not allowed to be a member of any other
organization. Any incoming order has to be processed as group. Body agents
have to bounce incoming orders. Head agents may order body agents to do a
specific task. This inclusion of all economic activity in the group results in the
head agent always being up-to-date about its body agents’ resource allocations.
The underlying group authority protocol does therefore not require a confirmation
phase and is shorter than the strategic network authority protocol.

The head agent retains all the profit for orders completed by the group. Each
round, it pays a fixed amount of money to each body agent.

e Members of a group may not be members of any other organization.

A | members of a group

D | forbidden

I | be member of any other organization
e Agents processing an order as group bodies must bounce the order.

A | Agents processing an order as group bodies

D | obliged

I | refuse the order, sending the name of the head inside the refusal message
e Body agents must take orders from their heads.

A | all group body agents

D | obliged

I | accept task ordered by a group head agent

4.3.7 Corporation

This last organizational form, the corporation (figure 4.6), is the result of the
head of the group assimilating the resources of its body agents. Afterwards, the
body agents no longer exist, the head agent acts like a normal single agent. There
are no further rules for this organizational form apart from the rules for single
agents.

4.4 Self-Organization

In most scenarios, it cannot be expected that the providers or their designers
know in advance what the best system organization will be to fulfill the sys-
tem requirements. One possible cause for this uncertainty could be changing
customer demands that are determined from outside parties and other circum-
stances not known in advance. Another cause might be the complexity of the
system, which precludes predicting system behavior and computing the optimal

4.4 Self-Organization 45

Customer

Supplier

Figure 4.6: Task assignment in scenarios with a corporation.

structure. In such scenarios, one of the best options might be to let the providers
organize themselves and decide during runtime what organizational structure is
most profitable for them.

The adaptation of provider relationships to changing customer demand has
two components: the forming of new organizations and the change of existing
ones. The first section describes how agents decide when to form a new or-
ganization and with whom. The second section describes how agents evaluate
their memberships in existing organizations and decide on whether to resolve the
organization, keep it, or change it to a different form.

4.4.1 Creation of New Organizations

When an agent system has to do the same tasks for a longer period of time, it
might be more efficient to adapt its structure to the structure of the tasks. If an
agent finds that it repeatedly completes a task by working together with certain
other agents, it should consider to facilitate this teamwork, as it can be expected
to be asked to complete the same task again. The means of facilitating teamwork
we investigate here is the formation of an organization, where the agents forming
the organization commit to a certain long-term behavior in order to increase the
efficiency of the group on certain tasks. This long-term commitment might be
detrimental to the agent if the selection of partners for the organization was based
on a rarely occurring constellation of orders in the system, so the agent should
not commit carelessly.

How should it decide when to form an organization and with whom? One
reasonable criterion for the selection of partners is the experience the agent had
with them. If the agent has delegated many tasks to the other agent or received
many task delegations from it, part of the preconditions of an efficient organi-

46 Specification

zation containing these agents are met. We formalize this experience by having
each agent keep a record of the trade history with the other agents. The agent
has an agent model for each other agent containing the order volume of tasks it
delegated to it and of tasks it got delegated from the other. The decision pro-
cess of whether to build a new organization and with whom piggybacks on the
normal auction process: whenever a customer has found a group of agents that
together can complete its task, this group checks whether they should form an
organization. The motivation for this is that the completion of the task shows
that this group of agents can successfully meet the current customer demand,
so the members of the group are a reasonable choice of potential organization
partners.

In order to avoid the complexity of recursive organizational structures in our
system, we only let new organizations form if the agents participating in the
completion of the task are doing so as single agents, not acting in the agenda of
an existing organization. They can, however, be part of an existing organization
that was built for a different product. The decision of whether to build a new
organization is based on an algorithm working on a graph. The nodes of the
graph are the agents that take part in the completion of the customer’s order.
Each agent in this graph checks its total trade volume with the other agents and
selects those whose trade volume exceeds a given threshold. The agents selected
this way are connected to the agent with an edge in the graph. Once all agents
have computed their connections, the graph is checked for connectedness.

If the graph is connected, the agents agree to form a new organization. A node
does not need to be connected to every other node, but there should be a path
from it to every other node in the group. The reasoning behind this is that an
organization should be “glued together” by the experience of profitable relation-
ships, but it is not necessary that every member interacts directly with all others.
Before building this new organization, each agent has to check whether this or-
ganization would conflict with its existing organizations or its plans of changing
its membership in existing organizations. Since agents can complete more than
one order in each round, the possibility that new potential organizations conflict
with each other has to be checked as well.

4.4.2 Change of Existing Organizations

If agents decide to build an organization as described above, they form a virtual
enterprise, the organizational form with the least commitment necessary. This
organizational form can be upgraded to a form with more commitment if the
collaboration in the organization has shown to be profitable for the agents, or it
can be resolved if it turns out that the organization is inefficient and the agents
are better off working as single agents again.

The progression of organizational forms is strictly along the spectrum of au-
tonomy, that is, new organizations start out as virtual enterprises, can be up-

4.4 Self-Organization 47

graded to cooperations, which can be in turn upgraded to strategic networks.
Strategic networks can be upgraded to groups, and those to corporations. All
organizational forms except the corporation can be resolved. Agents who are part
of a group that decides to form a corporation merge into a single agent and stay
so for the rest of the simulation.

Organizations that turn out to be inefficient do not downgrade one step down
the spectrum, rather they resolve completely and all agents start out again as
single agents, except if they were members of other organizations as well. The
reasoning behind this is that the organization is likely to have become inefficient
because the order situation has changed, so that a complete regrouping might be
more reasonable than just lowering the commitments of existing organizations.

The decision of progressing along the spectrum rather than, for example, al-
lowing a strategic network to build from scratch might not reflect the development
of the respective organizational forms in human societies, but it seems a plausible
implementation of careful behavior, given that in our scenario the agents have a
high uncertainty with regard to the order situation.

The decision of whether to keep, upgrade, or resolve an existing organization
is made by all agents together: each agent votes for one of the three options.
Agents choose how to vote based on the average volume per round of orders they
have processed via this organization. Orders they have processed as single agents
or via other organizations are not considered for their vote. If this average volume
exceeds an agent-specific threshold, the agent votes for upgrade. If it is below
another agent-specific threshold, the agent votes for resolve.

If all agents vote for upgrade, the organization tries to upgrade. If at least
one agent votes for resolve, it is resolved. In all other cases, the organization
tries to keep the current form. By “tries” we mean that all organization members
need to check whether the proposed change would conflict with their membership
restrictions. For example, an agent who is simultaneously in a strategic network
and a cooperation cannot upgrade the strategic network to a group without vi-
olating the restriction that members of a group may not be members of other
organizations at the same time.

To reflect that organizations are long-term commitments and to avoid ex-
ceeding reorganization in the system, organizations that have formed or changed
stay in their current form for a minimum number of rounds, after which they are
reevaluated each turn.

We briefly considered allowing the change of organizations by letting existing
organizations grow or shrink incrementally by assimilating or expelling single
members, but the resulting complexity arising from membership restrictions was
considered too great for the current implementation.

48 Specification

4.4.3 Membership Conflict Resolution Algorithm

Since agents can be members of several organizations at the same time, build-
ing new organizations or changing existing ones can violate the organizations’
membership restrictions. For example, a strategic network cannot upgrade to
a group if one of its agents is a member of another organization. We need to
set priorities that decide how to resolve conflicts between different organization
change proposals. These are the priorities we use in our system:

e If building a new organization would conflict with an existing organization,
do not build the new organization.

e If upgrading a strategic network to a group would conflict with an existing
organization, do not upgrade to group.

e If upgrading a strategic network to a group would conflict with building a
new organization, do not upgrade to group.

In summary, keeping existing organizations has highest priority, followed by build-
ing new organizations, and upgrading to a group has lowest priority. Other up-
grade conflicts cannot occur, because the product specific to an organization is
the same before and after the upgrade, so that upgrades other than strategic
network to group do not change membership restrictions. They can be treated
as if the organization proposed to keep its form.

Algorithm 1 shows the pseudocode for the implementation of these priorities
in our system.

4.5 Protocols

The parts of this section on the CNP, CNCP, and HCNCP are taken from our
publication for the Multiagent Interoperability workshop at the German Confer-
ence on Al [Knabe et al., 2002].

The Contract Net Protocol (CNP) is a widely used protocol in DAI, as it
proved to be a flexible and low communication interaction protocol for task as-
signment. The situation it is best suited for is that of a single task to be assigned
among a number of individual agents. However, it has shortcomings if the set-
ting for task assignment is more complicated. If there are several agents who
concurrently start protocols to assign tasks, early commitment of bidder agents
in the standard CNP leads to suboptimal outcomes, as assignments that are pos-
sible are not found. We propose the Contract Net With Confirmation Protocol
(CNCP), an extension to the CNP that avoids the problems of early commitment.
In scenarios where tasks are assigned in cascades, for example in holonic agents,
this extension takes the form of the Holonic Contract Net With Confirmation
Protocol (HCNCP). Examples of settings where the extensions improve on the

4.5 Protocols 49

Algorithm 1 Membership conflict resolution algorithm.
1: procedure ResolveConflicts (orgs: existing organizations of this agent,
orgsToBuild: new proposed organizations for this agent)

2: agentInGroup? < false

3: for all OF in {VE,COOP,SN,GROUP} do

4: for all org in orgs|OF]| do

5: if org.proposal != RESOLV E then

6: lock org.product

7: if OF = GROUP then

8: agentInGroup? < true

9: for all newOrg in orgsToBuild do

10: if agentInGroup? = true or newOrg.product is locked then
11: newQOrg.proposal «+ RESOLVE

12: else

13: if newOrg.proposal = UPGRADE then

14: lock newOrg.product

15: for all org in orgs|SN]| do

16: if org.proposal = UPGRADFE and more than one product is locked then
17: org.proposal < KEEP

standard protocol are given, as well as a discussion of the new protocols. We also
introduce protocols for authority directions in strategic networks and groups, and
for coordination of self-organization and voting.

4.5.1 Contract Net Protocol

Introduction

The assignment of tasks to agents and the (re-)allocation of tasks in a multiagent
system (MAS) is one of the key features of automated negotiation systems [Weifs,
1999b|. The contract net protocol (CNP), originally proposed in [Smith, 1980],
and other more general auction mechanisms can be widely applied to resource
and task allocation problems. The contract net has been applied e.g. to online
dispatching in the transportation domain [Biirkert et al., 2000, Fischer et al.,
1995], meeting scheduling [Garrido and Sycara, 1996, Sen and Durfee, 1994] and
flexible manufacturing [Shen et al., 1998, Camarinha-Matos and Afsarmanesh,
1998, Parunak, 1995]. Our discussion is based on the FIPA interpretation of the
contract net [FIPA, 2001], which is a minor modification of the original protocol,
in that it adds a rejection speech act and a mechanism to inform the initiator
about the outcome of the task. Currently, this interpretation is the standard
for a whole range of prominent agent platform implementations [FIPA-OS, 2002,
JADE, 2002,ZEUS, 2002|. Figure 4.7 shows an UML interaction diagram for this

50 Specification

Initiator Participant

H cfp -

refuse

T not-understood

u d_ead—:L
T propose line !
u reject—proposal 1
accept—proposal - i
failure

| - inform-done %
u inform-ref

Figure 4.7: The FIPA Contract Net Protocol.

protocol. In order to comply with the FIPA standards, we call the agent with the
task initiator, agents that compete for acquiring the task participants. In general,
the procedure requires the initiator to send a "call for proposals" including a task
description to all participants. They can specify their required costs for this task
in a proposal (or refuse to do the task at all). The initiator then accepts one of
these proposals, and rejects all others. The agent who got his bid accepted is
then required to inform the initiator about the result of the task (or its failure).

This protocol was designed for distributing one task among a number of
agents. However, if we assume a large number of initiators and bounded resources
for each of the participants (as is common in today’s multiagent systems), new
problems arise. Although the execution of this protocol is very efficient, it is a
hard problem for each agent to decide when to allocate the resources for which
task. Imagine that among the agents in a large-size multiagent system there are
n agents with tasks (initiators) and m providers of services (participants). While
a participant is in negotiation with a large number of initiators, it may still re-
ceive more call for proposals without having received any reject messages as the
initiators are still busy evaluating the proposals.

Up to now it remains an unanswered question which policy the agent should
use for resource allocation, i.e. in what manner it should reserve resources for
tasks it made a bid for. If the agent allocates too many resources too early,
it may not get its bid accepted and therefore resources will not be available
for other tasks. If it allocates too late, it may have committed to more tasks
than it has resources. The term “Eager Bidder Problem” has been coined for
this dilemma. Several approaches have been proposed: leveled commitments

4.5 Protocols 51

Customers

cfp propose

cf propose

Providers

]
V1

cfp cfp reject reject

S

Figure 4.8: Example of CNP sub-optimality.

([Sandholm and Lesser, 1996]; for an extension see |Excelente-Toledo et al.,
2001]), and statistical methods (as they are being used e.g. in flight booking
systems) [Schillo et al., 2002]. The latter depend on data gathered over a long
period of time and involve the risk of over-booking (as is the common experience
with frequent flyers) while the former requires more complex communication,
resulting in higher computational costs for both participant and initiator.

Shortcoming of the Contract Net Protocol

Let us consider the case where the agent allocates resources at the time of sending
the bid. We call this solution the ad hoc solution, or the conservative approach.
This solution makes sure that only correct assignments of tasks to agents are
created, i.e. that every agent only commits to the tasks it can perform. However,
if several participants send their proposal to the same initiators, which is not
unlikely, the result is that only some of them get a task assigned, while others
remain idle. Therefore, this procedure is not complete in that it will not compute
assignments that could be found with better approaches.

Figure 4.8 gives an example of a simple situation with two customers and two
providers where the CNP can lead to a suboptimal outcome. In phase A, the
first customer sends a call for proposals (cfp) to each of the provider agents. The
provider agents reply with their proposals in phase B, allocating the resources

52 Specification

required for the task. If, as shown in phase C, the second customer sends its
cfps before the first could finish its protocols, both providers will still have their
resources allocated for the first task, and therefore have to send reject messages to
the second customer in phase D. Even though the two providers could in principle
handle the two tasks, the system did not find this optimal solution.

The likelihood of failing to find a possible solution is even higher in scenarios
with more agents. Consider using the conservative approach in a setting with
100 initiators, each having one task to assign and 100 participants, each capable
of performing one task. Further consider that the deadlines are set in a way that
the participants cannot reply to the calls sequentially (otherwise the multiagent
approach would hardly apply). If in this case every participant uses a conservative
approach to the problem and just sends one bid, the chance of getting a bid
accepted assuming lottery on the side of the initiator is ca. 0.64 (the computation
of this probability is out of scope here, but from the problem chosen, it is in any
case clear that the probability is below 1). If other agents make more than
one bid, the probability is even lower. So in more than one third of all cases, the
available resources of the participant will be idle due to the conservative strategy.
Correspondingly, the same number of initiators will be left with unassigned tasks,
as they did not get any bids for their tasks, although the resources are in the
system.

4.5.2 Contract Net with Confirmation Protocol
Solution to the Shortcoming of the CNP

Our approach is based on redesigning the protocol to postpone the time of com-
mitment as far as possible. The major inefficiency in the CNP is that in every
execution of the protocol all participants need to commit themselves to do the job,
although only one of them will actually get the task awarded. We now present
the contract net with confirmation protocol (CNCP), which precisely addresses
this issue and improves the CNP procedure by drastically reducing the number
of commitments made.

The CNCP (Figure 4.9) is very similar to the CNP. It starts with a call for
proposals and gathers the responses from the participants, until the initiator
received messages from all participants or the deadline has passed. As in the
contract net protocol, this deadline safeguards that singular message dropouts
do not prevent the whole protocol from terminating. In the original contract net,
the participant makes its commitment in the bidding stage. In the CNCP this is
not the case: the commitment is only made when the initiator requests that the
participant should take over the task. For this purpose the initiator arranges all
bids in a sorted list and sends requests to participants starting with the best bid
to find out if they can actually do the job. The next participant is sent a request
message if the previous participant has sent a refuse or a deadline has passed.

4.5 Protocols 53

Initiator Participant

H cfp

refuse

u: not-understood %

u dead—:L

- propose line !
reject-proposal '

:

! request - i

|

refuse

f %ead—
i agree ine !
D accept—proposal

failure

‘u‘ inform—done % H
H‘ inform-ref :

Figure 4.9: The Contract Net with Confirmation Protocol.

This iteration stops if one participant sends an agree message. All other agents
are sent a reject-proposal message (except those who have already received the
request and sent the refuse). The participant only needs to commit at the time of
sending the agree message and can make bids to other cfps in the meantime. In
order to trigger task execution and to correspond to the CNP it is required that
the agent sends an accept-proposal while the participant will reply (as it does in
the CNP) with failure, inform-done, or inform-ref.

Analysis

As well as the original contract-net protocol, the proposed procedure needs O(n)
messages, where n denotes the number of participants. In the best case, the
CNCP requires only two more messages (the request for confirmation and the
reply to it) while still solving the resource allocation problem of the initiator. In
the worst case, the initiator needs to contact all participants to find out that no
one can do the task. Although this results in a plus of 2n messages for the CNCP,
its great advantage is that it only requires one agent to make a single commitment.
This is achieved by using the confirmation stage in the protocol, to postpone the

54 Specification

commitment and allow the participants to reply to all incoming call for proposals
without need to already allocate the resources at this early stage of interaction
or to risk penalties for multiply allocating resources. A minor disadvantage of
this approach is that the initiator possibly needs some overhead to repeatedly
find the next best bid, while the CNP only requires it once to find the maximum.
However, with careful implementation this additional computational effort is by
several orders of magnitude lower than the effort spent for sending the messages,
and is in the general use of MAS a negligible additional cost.

In order to guarantee termination even in the case of faulty participants the
second deadline of the protocol is necessary. It makes sure that the next best
participant can be sent a request message and has a chance to receive the task.

Shortcoming of the CNCP

Both the CNP and the CNCP work in conventional as well as in holonic mul-
tiagent systems (HMAS). HMAS require due to their recursive structure the
recursion of negotiation protocols, and both protocols can be used in cascades,
i.e. each participant which is a holon head can initiate another instance of the
same protocol to subcontract the task to other agents (generally agents in the
same holon). In the case of the CNP this leads to rapidly increasing allocations
of resources as all participants must allocate their resources (see the discussion
above). The CNCP avoids this inefficiency. However, in some cases a new in-
efficiency arises when applying a cascade of CNCPs, namely when some of the
agents in the lower part of the cascade refuse to do the job after having made an
initial bid.

Figure 4.10 shows a scenario of two customers and a holon consisting of two
body agents and a head agent who is in charge of communicating to the outside.
The cost of the first body agent for completing the task of either customer is 5,
that of the second 6, so the second agent is less efficient than the first. Phase A
shows what happens after both customers have sent their cfps to the holon head.
The head reacts by starting another CNCP among the body agents its holon is
composed of. It decides on the basis of its body agents’ best bid how to reply
to the initial c¢fp. The head chooses the cheapest agent in both cases and sends
a proposal of 5 to both customers. After receiving the first request in phase B,
the head forwards this request to its cheapest body agent, who in turn allocates
the resources for the task, which are now no longer available. The request from
the second customer in phase C has therefore to be rejected (phase D), as the
holon can no longer complete the task for the proposed price of 5. The CNCP
fails to find the solution of assigning the first task to the agent with cost 5 and
the second to the agent with cost 6, which would be the optimal outcome in this
scenario.

4.5 Protocols 55

A Customers B
B
propose: 5 Head,” propose: 5 request
A
c D
= = |
request Aect
/X /X
S O S O
5 6 5 6

Figure 4.10: Example of CNCP sub-optimality in cascading applications.

4.5.3 Holonic Contract Net with Confirmation Protocol
Solution to the Shortcoming of the CNP

To avoid this problem in scenarios with holonic agents, we use a version of the
CNCP that includes the possibility of a second proposal after the request has
arrived. If the head finds that its cheapest body agent can no longer do the job,
it can send a request to the second best bidder. If the second best bidder agrees,
the holon head can send a second proposal to the initiator (which is equal or
higher than the first), who can compare it to the bids it received from the other
participants. Since the CNCP does not allow such a second proposal, the holon
head would have to refuse the job even if its second best bidder could do it for
a better price than anyone outside the holon. The modification to the CNCP
for systems with holonic agents therefore consists of adding a second proposal as
possible reply to a request. Figure 4.11 shows the resulting Holonic Contract Net
with Confirmation Protocol (HCNCP).

The participant allocates the resources for the task when either agreeing to
the request or making a second proposal. The second proposal requires a com-
mitment to ensure the termination of the protocol. A noteworthy difference from
the CNCP is that the initiator can send a reject even after the participant has
committed. To see why this modification is necessary, recall the scenario men-
tioned above, where the holon makes a second proposal. It does so only after

56 Specification

Initiator Participant

H cfp

refuse

u- not-understood %

u‘ dead—:L

propose line |
reject-proposal '

:

! request .-

|

refuse

u‘ agree
dead+
propose line !

reject-proposal_ |

accept—proposal !

failure

- inform—done %
- inform-ref

Figure 4.11: The Holonic Contract Net with Confirmation Protocol.

A

T

its second best bidder has committed. However, it is possible that this second
proposal is rejected because it is no longer the best bid. In this case, the holon
has to forward the reject to its committed subunit. In summary, the HCNCP is
a recursively applicable protocol that reduces the number of unnecessary com-
mitments by introducing a confirmation stage and that increases the flexibility of

holons by allowing a second proposal to reach better solutions than the cascading
CNCP.

Analysis

Assuming that all agents in a cascading HCNCP are nodes in a tree where the
problem solving body agents are represented by the leaf nodes, using the second
proposal the worst case occurs if in any holon with leaf node agents, the agent
with smallest bid refuses to do the task and a leaf node agent in this holon
commits. In this case the number of commitments increases to the number of
parents of leaf nodes, but the protocol still reaches the same (optimal) solution
as the CNCP for the non-holonic case would.

The HCNCP requires the same number of messages as the CNCP in systems

4.5 Protocols 57

request

refuse

agree

reject—proposal

accept—proposal '

failure

inform—done

inform-ref

N EEE:I
A

Figure 4.12: Authority Protocol with Confirmation.

without cascading protocol applications. In cases where the second proposal
mechanism is used (i.e., in cascading systems where the CNCP would fail to find
an assignment and send a refuse), each accepted second proposal requires two
more messages and each rejected second proposal one more message.

4.5.4 Authority Protocol with Confirmation

The Authority Protocol with Confirmation (Figure 4.12) is used in strategic net-
works by the head to issue orders to its body agents. It differs from the HCNCP
by the absence of a call for proposal stage and of an option for a second proposal.
The head has access to its body agents’ schedules and resource managers, so he
knows which agent can do the job for the lowest price without having to ask them
for proposals. He cannot, however, omit the confirmation stage: as agents are
allowed to be members of several strategic networks, it is possible that a body
agent has received a direction from another head since he last informed the first
head about his schedule. He might no longer be able to allocate enough resources
to fulfill both directions. In this case, the body agent has to reject the second
direction.

4.5.5 Authority Protocol without Confirmation

Groups do not allow body agents to be members of several companies. As a body
agent can have no more than one group head, he can not receive conflicting direc-
tions from different heads. The protocol used for directions in this organizational

58 Specification

H inform

failure

inform—-done

inform-ref

B £

Figure 4.13: Authority Protocol without Confirmation.

form, the Authority Protocol without Confirmation (Figure 4.13), does therefore
not require a confirmation stage. It consists of an inform performative from the
head to the body agent, and a failure/inform reply.

4.5.6 Self-organization Protocol for Creating New Organi-
zations

The communication necessary for the decision whether to build a new organiza-
tion is not done via a separate protocol but rather piggybacks on the HCNCP
during normal auctions. Whenever a customer has found a group of agents that
can complete his order, this group decides whether to build a new organization.
The information necessary for this decision is sent together with the normal con-
tent of the HCNCP messages.

When the customer sends a request message, it inserts an empty list into
the content. A provider agent receiving a request message inserts itself into
this list and forwards this new list in the content of the request message to its
subcontractors, if it has any. In this way, the last subcontractor in this “order
chain” receives a list of all providers in the chain. For each provider in this chain,
it decides whether it would like the provider to be its partner in a new organization
by comparing the average trade volume between the two agents to a threshold
value. It only takes into account the trade volume of those elementary types that
are part of the original customer order, because other types are irrelevant to the
current demand.

The agent returns the list of providers that exceed this threshold in its
agree/2nd proposal message. The receiver of this message forwards this list up
the chain, together with its own list of “favorite” partners. Once the message
propagation has reached the customer at the beginning of the chain, the cus-
tomer checks whether the chain agents form a connected graph: the agents are

4.5 Protocols 59

the nodes of the graph, and two nodes are connected if one of the agents is a mem-
ber of the favorite partner list of the other. If the resulting graph is connected,
the customer sends the list of chain agents in the accept proposal. Otherwise,
this list is empty. Agents receiving an accept proposal with a non-empty chain
members list know that they are supposed to form a new organization with these
agents. They forward the list along the normal HCNCP accept proposal down
the chain and note that they have to check at the beginning of the next round
whether they really can form this new organization.

4.5.7 Self-organization Protocol for Existing Organizations

At the start of each round, before the customers emit their orders and the nor-
mal auctions begin, the provider agents compute changes to their organizational
structure and communicate any changes to each other. For each existing organi-
zation it is a member of, a provider agent decides whether it wants to keep its
current form, upgrade it to the next form, or resolve it, based on the average order
volume per round it has processed via this organization. It needs to coordinate
its decision with the other members and also take into account the membership
restrictions for organizations.

The process of coordination is complex, because changes of an organization
are restricted by changes in overlapping organizations. A proposed upgrade of
a strategic network to a group fails if one of the agents is a member of another
organization, but if that second organization has to resolve because one of its
members finds it inprofitable, the upgrade of the strategic network is possible.
We have decided to structure the coordination process in phases and for each
organization let one of its members coordinate the communication.

The coordinator is the head in the organizational forms which have a head,
and the first agent of the member list (which each member has an equal copy
of) in the case of the virtual enterprise, which has no single head. New poten-
tial organizations that have not yet been built but are the result of the process
described in the previous section participate in the coordination as well, their
coordinator is chosen also by taking the first agent in the member list.

The coordination process has four phases. An agent keeps a separate phase
for each organization and new-to-build organization it is a member of. A phase
consists in either sending change proposals or receiving change proposals. After
sending or receiving proposals, the agent marks this organization as ready to
enter the next phase. Only if all of its existing and new-to-build organizations
are marked as ready for the next phase does the agent initiate the next phase by
starting the membership conflict resolution algorithm described in section 4.5.3.
This algorithm checks for possible conflicts in the proposals and resolves them
by changing some proposals. After that, the agent starts the new phase in each
organization by sending the new proposals to the coordinator or its partners.

Figure 4.14 shows the protocols implementing the four phases. Proposals for

60 Specification

Update Protocol for Existing Organization Build Protocol for New Organization
ui Cancel J ; j
i Inform # ; Phase 0 : j
U Cancel :u - D Cancel :u
i 7# Inform | Phase 1 : 7# Inform |

Cancel Cancel

| Inform % 3 Phase 2 | Inform %

Cancel Cancel

L= =] =

Inform Phase 3 Inform

Figure 4.14: Self-organization protocols.

upgrade and keep are sent in messages with the inform performative, propos-
als for resolve with the cancel performative. The performatives needed to be
different because resolve proposals always have the organization’s resolution as
consequence and therefore the protocol can terminate at this point, as the orga-
nization is no longer needed in the coordination process. The grey boxes indicate
that the agent uses the membership conflict resolution algorithm. The left figure
shows the protocol for updating existing organizations, the right figure for new,
potential organizations.

In phase 0, the non-coordinators of an existing organization inform the coor-
dinator of this organization about their proposal. After the coordinator received
proposals from all of the organization’s non-coordinators, it adds its own pro-
posal to the set of collected proposals and computes the final proposal. If all
agents proposed upgrade, the final proposal will be upgrade. If at least one agent
proposed resolve, the final proposal will be resolve. After that computation, the
coordinator marks this organization as ready for the next phase. When an agent
has marked all of its organizations as ready for the next phase, it starts the mem-
bership conflict resolution algorithm. This may result in the “downgrade” of some
proposals, for example, a strategic network that proposed to upgrade now only
proposes to keep its form.

The coordinators send the resulting proposals to the non-coordinators in phase
1. Since the proposals have not yet undergone a conflict resolution on the side of
the non-coordinators, all agents initiate another run of the resolution algorithm
when starting phase 2, when all their organizations have received the proposals
from the coordinators. This can result in further downgrade of some of the

4.5 Protocols 61

Coordinator Non-coordinator|

f inform H

inform

0

Figure 4.15: Voting protocol.

proposals. Finally, the resulting proposals are sent back to the coordinators,
who compute the actual change for the organization in the way described above
(resolve if at least one proposal is resolve, upgrade if all proposals are upgrade,
otherwise keep form), and then inform the non-coordinators about the actual
change in phase 3.

The protocol for new potential organizations (the right one in figure 4.14) is
very similar to that for existing organizations. It differs only in that the non-
coordinators do not send their first proposals in phase 0. The reason for this is
that new organizations do not have a trade history to base a decision on, so the
coordinator does not need to be informed by the non-coordinators about their
proposal-it assumes the proposal to be upgrade. This proposal in the case of
new-to-build organizations means to actually build the organization. The option
keep is not used in the build protocol, as the potential organization does not exist
yet.

4.5.8 Voting Protocol

Virtual enterprises do not have a designated head agent, but cooperations do.
Whenever a virtual enterprise upgrades to a cooperation, the member agents
need to decide which one of them will become the cooperation’s head agent.
They do this by voting: each agent votes for another agent, the agent with the
majority of the votes becomes the head. The voting criterion is the trade history
between agents. An agent votes for the virtual enterprise partner it has traded
with most.

The voting process is coordinated by the first agent in the member list. After
the self-organization phase has resulted in the upgrade of a virtual enterprise to a
cooperation, the non-coordinators of that virtual enterprise send their vote to the
coordinator. The coordinator then inserts its own vote into the set of received
votes and computes the winner of the election. This result is then sent to all
non-coordinators. Figure 4.15 shows the protocol used for this communication.
The performative used for sending the vote and for sending the result is inform.

62

Specification

Chapter 5

Implementation

In order to test and evaluate the proposed application of the selected organiza-
tional forms to a multiagent system implementing a market for task assignments,
we have developed two implementations for a simulation testbed. The first im-
plementation was written in Java and uses the FIPA-OS platform for agent com-
munication. The first section outlines the motivation for this implementation.
In the final phase of the thesis, when the actual experiments were run, it turned
out that this implementation does not meet the computational requirements for
reasonably sized scenarios. Therefore we had to create a second implementation
in C+-+. The second section goes into more detail about this implementation.
The third section gives an overview of the scheduling algorithm we used: earliest-
deadline-first. We need a scheduling algorithm since the tasks can have deadlines
extending over several rounds. The fourth section deals with the communication
that is not handled by the protocols specified in chapter Four.

5.1 FIPA-OS implementation

We want the agents in our electronic market to comply with the FIPA standard,
in order to ensure interoperability with existing and future multiagent system
projects and in order to draw on current work in agent communication. We had
the option of writing the necessary implementations ourselves. This would have
given us more control over the implementation details and a software package
hand-tailored to our needs, but it would also have required more time. Fortu-
nately, there are a number of different implementations of the FIPA standard
available on the Internet. We chose to use FIPA-OS, a freely available software
library that has the advantage of being used in other projects and diploma theses
at the multiagent systems group of the German Research Center for Artificial In-
telligence (DFKI) where this thesis was written. We could therefore profit from
existing experience with this library and retain the option of future merging of
code from the different projects. Example projects at the DFKI that use FIPA-

64 Implementation

Agent Implementation KEY
Mandatory

JESS Agent Shell Component
Switchable
Component
Optional
Component

Conversation Scheduler

Message Transport Protocols

Figure 5.1: High-level architecture of FIPA-OS |Guide, 2001].

OS are CASA and SAID. The FIPA-OS implementation uses JESS as a reasoning
engine. JESS’ advantages were that it is free for academic purposes, has a good
interface to Java, and is well integrated into the FIPA-OS framework.

5.1.1 FIPA-OS Overview

FIPA-OS is a toolkit for developing FIPA-compliant agents. It is an open source
(suggested by the “OS” in the name) Java based multiagent system framework
developed by Nortel Networks with the intent of providing a platform whose
architecture emphasized ease of extension and modularity [Poslad et al., 2000].
Figure 5.1 shows the high-level architecture of FIPA-OS. The color of each com-
ponent shows whether this component is mandatory and has to be executed by all
FIPA-OS agents, switchable, meaning that agents developers can choose among
different implementations for this component, or optional.

We will only discuss some of the components shown in this figure: the Message
Transport Protocol, the Conversation Manager, the Task Manager, the Agent
Shell and the JESS Agent Shell.

Message Transport Protocol The message transport protocol can be imple-
mented as for example RMI, which restricts the interoperability to agents
written in Java, or IIOP, which enables communication between agents that
are written in a language that supports CORBA, but is less efficient than
RMI. We do not use CORBA and have therefore chosen RMI as our message
transport protocol.

Conversation Manager The conversation manager provides the ability to
track conversation state at the performative level, as well as mechanisms
for grouping messages of the same conversation together. All conversations

5.1 FIPA-OS implementation 65

in our system follow protocols, and the conversation manager ensures that
the conversation follows the protocol specified for each conversation.

Task Manager FIPA-OS agent split their functionality into small, disjoint units
known as tasks and implemented as separate objects. Task are event-based
objects that can run concurrently and that can be associated with conver-
sations, allowing the agent to conduct several different conversations at the
same time. Tasks can spawn child-tasks, structuring the functionality of
the agent in a hierarchy.

Agent Shell The agent shell is the level on which programmers implement their
own agents. It provides the interface to the other components and the func-
tionality of sending messages, retrieving the agent’s properties, registration
with platform agents, setting up tasks, and shutting down the agent.

JESS Agent Shell The JESS agent shell provides an interface to the JESS
engine, which is discussed in one of the next sections.

5.1.2 Alternatives to FIPA-OS

There are a number of other multiagent system frameworks that comply with
the FIPA standard and are available for free download: Zeus [ZEUS, 2002| and
JADE [JADE, 2002|. A study by Fonseca et al. which compared the three frame-
works showed that FIPA-OS has advantages in that it has a good conversation
management by checking for protocol compliance, offering message retrieval and
storage utilities, conversation tracking by identification number, and a messaging
agent for manually driving and debugging conversations [Fonseca et al., 2001]. Its
disadvantages include the lack of built-in support for customizing message routing
and lack of built-in state machine support. We decided to use FIPA-OS because
these disadvantages are only a minor inconvenience in our application, and there
has been more experience with this framework in our working environment.

5.1.3 JESS

Our agents need a certain degree of reasoning ability to maintain a model of other
agents and decide on its basis how to behave in the electronic market. We chose to
implement the reasoning mechanism in form of an expert system, which is a rule-
based approach to capturing an expert’s knowledge in form of if-then rules. An
expert system consists of a base of rules comprising the domain knowledge, facts
that are parameters characterizing the current problem and an inference engine
that makes rules fire if the facts matching their firing patterns are present in the
knowledge base. Activated rules can assert new facts or modify old ones. Expert
systems are often more efficient than other reasoning mechanisms because the
inference engine uses the Rete Algorithm, which can exploit structural similarity

66 Implementation

K - Version: 25.06.02 Configuration File: screenshot.cfy

Simulation Celor Code

2 @ TraderAgent-+@lecalapdFils: provider.A.d fOHest: |ocalapdl
WATN:initia-fact) -
MAINzmyName "4") =

@ MAIN::profit 1.0)

MAIN:gift 1.0)
@ MAIN:my-type povida d
MAIN: o c-5a pital 50)
@ MAIN::pmduction-msoume "A" 2 5]
MAIN::provide gen ts { provide fugen s "9" 8" "7 1" U

) RN 7

MAIN:moaived-updates fupdated-agents))

MAIN::c00 ps mtion (poduct "4 B') thead "0 (hady "1 2"
MAINgmu p head "3") ibody "4
MAIN:VE (product "& B G (body 2
MAIN: st ts gic-ne twork (produsct "A B C") (head "6") (body "

0 1 1
MAIN:committs 40 manizations (gmup FALSE) (pmdusts 1)
IMAIN:my-status (pa isipant-tasks 0] (build-OF O))
MAIN:messags Limit 0)

MAIN::oms nizafons-asseted)

o e MAINzmy-gmu p head "3") (processed s (body "4" 5"
@ . MAIN:S Ul-gent-found)
MAIN:agentmadel (agentname "0") (1D < Exto makAdd @ ss:
@ fipace.ont fipa fipaman AgentiDs) fincoming-giftvalus 0.0) (a
@ @ vtgoing-gifttvalua 0.0} fincoming-oms realus 0.0) (outgaingo

5 rvalus 0.0) fgift-giving nil) (failu @ -s=zimation unknown) (ag
Bntiyps prwvidar (A 0) (B 0) (C 0) (D O))
MAIN:agentmadel (agentname *10% (10 <Exts mal-Add s
4 fipaoe ont.fipa fipaman AgentiD> (incoming-giftvalus 0.0
utgoing-gift-valus 0.0} fincoming-ome realue 0.0) (oulgoing-o
s rvalua 0.0) jgiftgiving nil) (failu B -a=fmation unknown) (ag
Bntiype provide) (4 0 (B 0) (G 0) (D O))
MAIN:agsntmadel (agentnama "11% (1D < Exts mal-Add s

1]

Query DF | ‘ Get Facts

537 =it -
337 s5ocisl GUIAgent start was succssefull
5:39x5ea ching for Servics: provider,
%:39>5sarching for Gervics: customar,
53:39xAge nt TraderAgs nt- 5@ ocsl ap added
3:38=Age nt TraderAgs nt- 16l ocsl ap added
5:30=Agant TraderAgant-17@lccslap added
5:30=Agant TraderAgant- 13 @locslap added
5:38A0s nt TraderAgent-19¢0localap added

4
Agents fini z21521 Round: 0 Status: Idle. Step Go!

Figure 5.2: Testbed for organization in multiagent systems.

of rules to save computation. The software package JESS (Java Expert System
Shell) provides such an expert system inference engine written in Java [JESS,
2002]. We used JESS because it is free for academic purposes, has a good interface
to Java, and is well integrated into the FIPA-OS framework.

5.1.4 The User Interface

To evaluate the application of sociological concepts to task assignments in mul-
tiagent systems, we have developed the Testbed for Organization in multiagent
Systems (TOM). The testbed is a round-based simulation of an electronic market
where customer agents try to assign their tasks to provider agents, who can be
organized in different groups and organizational forms, and who can change their
organization. Figure 5.2 shows a screen-shot of the program.

The large graphic area displays the agents as squares and circles, with squares
symbolizing customer agents and circles symbolizing provider agents. Agents that
together form organizations are connected by lines, the type of organization de-
termining the lines’ color. Each organization has one or more heads that are
marked by a ring around their symbols. The ring’s color is the same as the link
color for the organization. Once the simulation is running, agents that success-
fully assign tasks are connected by black lines to the agents they assigned the
tasks to. The position of the agents in the graphics area is determined at ran-

5.2 C++ Implementation 67

dom at the beginning. After that, the positions change depending on the links
between the agents. A link can be seen as a spring with a given rest length. If
the actual length is larger than the rest length, the spring is extended and the
spring will exert a force on the agents it connects, trying to draw them towards
each other. If the actual length is smaller than the rest length, the force will try
to push them apart. The rest length for organization links is a small constant
value. The rest length for black links depends on the number of successful task
assignments between the two agents: the more task assignments, the shorter the
rest length. Black links between agents that did not trade with each other for
the last few rounds are deleted.

Clicking on an agent lets the user inspect its JESS facts by displaying them in
the right window. The user can control the simulation by letting it run stepwise
with the program halting and waiting for further instructions after each round
or in continuous mode, with the next round starting automatically at the end of
each round. The setting is specified by configurations, which the user can create,
load, save, or edit at the start of the program. The configuration determines the
number of agents and parameters for each agent.

The current version supports only agents on the same platform, but future
versions might be extended to enable the user to simulate a market where the
interacting agents are located on different platforms and communicate over the
Internet. We did not implement this advanced version for our experiments, be-
cause it turned out that the performance bottleneck in our application is the
speed of message routing as opposed to local processing, so we would not have
gained much if the agents were distributed on different systems.

The agents print all incoming and outgoing messages to the console, as well
as some special information like their current capital and whether they failed to
assign an order. The console log is then processed by Python scripts and the
resulting data fed into Microsoft Excel for further analysis.

5.2 C++ Implementation

5.2.1 Reasons for a Second Implementation

Unfortunately, after the FIPA-OS testbed was implemented and used to run
large scenarios, it turned out that the implementation had severe limitations.
Only a very small fraction of the simulation runs completed without crashing,
which we attribute to the instability of FIPA-OS in scenarios with thousands of
auctions running at the same time on the same machine. Our specification of
the market scenario requires a number of auctions exponential in the number of
elementary types in the customer orders and in the number of provider agents.
The discussions on the FIPA-OS mailing list suggest that this may have been the
first time that a system using FIPA-OS has had to meet requirements of such

68 Implementation

scale, which could be the reason we have not heard of similar difficulties with
FIPA-OS before.

We estimated that these difficulties with FIPA-OS will not be solved in an
acceptable time, so we decided to implement a multiagent system in C++ that
uses FIPA conforming messages and that allows us to run experiments with sce-
narios containing a reasonable number of agents and completing in an acceptable
time. The C++ implementation has been used for the experimental evaluation
for this thesis. The FIPA-OS implementation might become of interest again in
the future when the library reaches a more stable state or if the scenarios need
fewer agents and less complex orders.

5.2.2 Differences Between the Implementations

The two implementations have in common the GUI and the architecture based on
conversation tasks. A major difference is the concurrency: the FIPA-OS imple-
mentation uses concurrent threads for its tasks, while the C++ implementation
is based on global ticks. Each conversation task in the C++ implementation has
two sets that can contain messages: an inbox containing all messages sent to the
task in the last tick, and an outbox containing the messages the task wants to
send this tick. A tick consists of two phases: a send phase and a run phase.
In the send phase, each task sends the messages in its outbox by removing the
message from the outbox and putting it in the inbox of the message’s receiver. At
the end of the send phase, all outboxes are empty. After the send phase, agents
start the run phase, in which each task processes the messages in its inbox. For
example, a HCNCP participant task that finds a call for proposals in its inbox
will react to the cfp by evaluating the order and either putting a refuse message
or a proposal message in its outbox. The tick ends when the agents cannot pro-
cess anymore without messages being sent. Then the next tick starts. Such a
tick-based communication has been used before in experiments with multiagent
systems by Turner and Jennings [Turner and Jennings, 2000].

5.2.3 Hardware Used

The experiments were run on a cluster of 39 dual Pentium ITI 800 MHz computers
with 256 MB RAM each.

5.3 Scheduling Algorithm

5.3.1 Scheduling in our Implementation

The provider agents have limited resources: each turn, they can produce no more
than a limited amount of a certain type. The customers, in turn, have limited

5.3 Scheduling Algorithm 69

time: they want their orders executed in no more than a certain number of turns.
The providers’ resource limit is called their capacity, the customers’ time limit is
called their deadline. When deciding whether he can fulfill an incoming order, a
provider has to check if he has enough capacity to execute the new order together
with the orders he has already accepted such that each order is finished before
its deadline expires. The problem of finding a plan which results in the timely
completion of all orders is called a scheduling problem.

5.3.2 Scheduling Overview

Scheduling problems are widespread in the areas of business and computing. Op-
timal algorithms and heuristics have been suggested for different classes of such
problems. In general, scheduling can be described as the problem of determining
whether a given list of tasks can be completed in such a manner as to satisfy
a deadline for each task. The task can be periodic or aperiodic, and they can
be known in advance or may change at runtime. Systems that know their tasks
in advance and build a schedule only once are called static schedulers. When
new tasks can arise at runtime or old tasks change, the schedule will have to be
updated every time a critical change arises. Such systems are called dynamic
schedulers. Scheduling problems are also differentiated in those that allow over-
load (missing a deadline is not fatal) and those that do not, as well as systems
that can process only a single task at a time, and those that can run several tasks
in parallel.

5.3.3 Scheduling Requirements in our Application

In our system, each task has to be scheduled as a single instance, hence the tasks
are aperiodic. The provider agents do not know the tasks in advance; they have
to decide on accepting new incoming tasks and executing accepted old ones in
each round, hence the scheduling must be dynamic. In our system, we consider
deadlines to be strong requirements: we do not allow overload of the processing
units. Finally, each agent can process only one task of each elementary type at
a time, so the providers act as uniprocessors. We want to emphasize that the
scheduling problem in our application to which we want to apply a scheduling
algorithm is restricted to finding a local schedule for a single agent who has a list
of orders to process. The global scheduling problem, the assignment of tasks to
a number of agents, is known to be NP-complete and is handled by the auction
mechanism, not with a specific scheduling algorithm.

5.3.4 Choice of Scheduling Algorithm

There is an algorithm that is optimal for such systems which are aperiodic,
dynamic uniprocessors with no overload: the earliest-deadline-first algorithm

70 Implementation

(EDF). This algorithm computes a schedule by always executing the task with
the earliest uncompleted deadline. EDF has been shown to be optimal in that if
a schedule exists that will meet all deadlines, EDF will find it [Liu and Layland,
1973|. A further advantage is that it will produce a schedule with the shortest
completion time. It is a very popular algorithm and is the basis of a large part
of the dynamic priority scheduling research. Its only drawback is in systems
that allow overload. When not all deadlines for the accepted tasks can be met,
EDF degrades ungracefully. But since our systems does not allow overloads, this
drawback is not an issue here.

5.3.5 Speed of Selected Algorithm

To compute the algorithm’s performance, we need to describe the implementation
in more detail. Each provider maintains a list of accepted and unfinished tasks
in order of ascending deadline. To check whether a new task can be scheduled,
the agent inserts the new task into the list and, for each task in the new list,
checks if its lazity is greater or equal to the time required for completing all tasks
preceding it in the list. A task’s laxity is defined as the time from now to the
task’s deadline minus the time required to complete it. The laxity is a measure
of free time available for other tasks. When checking or accepting a task, the
scheduling algorithm’s running time is O(n), where n is the number of orders
already scheduled. Finding the task to be processed next is O(1), as this task is
the first element of the sorted list.

5.4 Communication not Handled by the Protocols

Apart from messages sent according to one of the protocols described in the fourth
chapter, agents communicate for other purposes, like telling each other when to
start a new round or that they are no longer participating in new auctions. This
section lists the communication that happens outside of the protocols, except for
trivial messages that are sent for updating the GUI. The only communication
described here that contributes to the performance measure number of messages
is the special communication for strategic networks and groups (Section 5.4.2),
all other messages are not counted.

5.4.1 Simulation Control Communication

The simulation is controlled by a special agent who does not take part in the
auctions. This control agent is responsible for starting and shutting down other
agents, initiating new rounds, and keeping a count of auctions that have not
yet finished in the current round. Each round is divided into two phases: the
initiation phase and the auction phase. When starting a new round, the control

5.4 Communication not Handled by the Protocols 71

agent sends a message to all other agents telling them to initiate for the new
round. Customer agents do nothing in the initiation phase, but provider agents
initiate by starting self-organization protocols, depending on the organizations
they are a part of and whether they agreed in the previous round to build a
new organization. Once the self-organization protocols are completed and the
system has changed its state into a new configuration, the agents tell the control
agent that they have finished initializing for the new round. The control agent
then sends a message to each agent telling him to start the auction phase. On
receiving this message, the customer agents emit their orders for the new round
by sending call-for-proposals to a number of provider agents. Once all auctions
have completed, the customers tell the control agent that the auction phase is
over, so he can start another round.

5.4.2 Special Communication for Strategic Networks and
Groups

Strategic networks and groups require a lower number of messages for assigning
tasks because the task assignment is done by a central instance, the organization’s
head, who has information about the capacities and available resources of its body
agents and the authority to decide what to do with their free capacities.

The information about their resources and capacities is sent to the head by
the body agents when forming the organization. This is sufficient for the group,
as body agents cannot be members of other organizations, so the head does not
need to be informed about changes in resource allocation, as he is the only one
in control of this allocation and can keep his own account of it. In the strategic
network, however, body agents can be members of several organizations and can
accept orders without informing their head about them, if the order asks for a
product of a type different from the strategic network’s specific product type.
Since the head should be kept as up to date about their available resources as
possible, body agents send their new capacities to their heads as soon as they
accepted an order outside the strategic network.

These additional messages somewhat lessen the advantage of the two orga-
nizational forms, but since they are only sent when forming the organizations
and when an order has been successfully assigned, it is reasonable to expect the
number of messages to be still significantly lower than in other organizational
forms.

5.4.3 Special Communication for Corporations

Forming a corporation is an irreversible process; body agents who merge into
a new corporation can no longer participate as provider agents for the rest of
the simulation. Other agents therefore should not send them any more call-for-

72 Implementation

proposals, as this would be useless and reduce the system performance. Corpo-
rations are formed from an existing group, which has a dedicated head that will
represent the corporation to the outside. All other members of the former group
send leave messages to all agents in the system, telling them to delete them from
the list of provider agents and not to consider them in future auctions. Since it
is possible that they receive a call-for-proposals before their leave messages have
reached their destinations, they simply refuse any orders sent to them after they
have formed a corporation; they do not bounce them by asking the agent sending
the order to send it to the corporation head instead.

Chapter 6

Experimental Evaluation

This chapter deals with the empirical evaluation of the proposed concepts with
the testbed introduced in the last chapter. Empirical validation is becoming more
popular in the field of Al for two reasons: first, increasing computing power makes
it easier to perform large experiments [Walsh, 2001]. Collecting enough data in
reasonable time to make statistically valid statements was not always possible.
The second reason is that there is an increasing awareness that much of current Al
research lacks in validation of its results and statements [Cohen, 2002]. Validation
methodology, like a sound experimental plan and rigid statistical analyses, that
are common in other fields which rely on empirical results and experiments, is
starting to gain more acceptance among Al researchers.

To comply with the scientific method, experimental evaluation must start
with the formulation of hypotheses, designing the experiments, then proceed
with collecting the data, analyzing the results, and finally accepting or rejecting
the hypotheses. The initial hypotheses must be motivated by the goal of the
research, and can originate from theoretical considerations or exploratory test
runs with the system. In the first section of this chapter, we state the hypotheses
that we are going to test in our experiments. The second section describes the
experimental plan designed to produce the data that can accept or reject the
hypotheses. The third and final section presents the results and analyzes the
data, drawing conclusions about our stated hypotheses.

6.1 Hypotheses

As stated in the chapter Problem Description, the primary goal of this research
is to provide an understanding of how certain concepts from the field of
sociology that describe forms of cooperation in human societies can be applied
to agent societies with beneficial effects on given performance measures. What
is of interest to us is therefore how different sociological configurations in agent
systems effect the performance of the overall system and that of individual agents.

74 Experimental Evaluation

We have three hypotheses for scenarios containing one form of organiza-
tion, three for scenarios with different forms of organization coexsting, and three
for scenarios examining self-organization. Our working hypotheses are:

Hypothesis 1 In scenarios where all organizations are of the same form (ho-
mogenous scenarios), the rate of failed orders in the system will be lower
for more hierarchically oriented organizational forms.

Failure to assign a task even though the system has sufficient resources is not
uncommon in settings where the task cannot be completed by a single agent and
other agents need to be sub-contracted, as our experiments have shown. This
remains true even if there is no message limit and agents are allowed to send cfps
to all providers in an auction. Figure 6.1 shows an example where the timing of
the messages is such that two orders AB that consist of elementary types A and
B both fail to get assigned, even though the providers could in principle do one
of them.

The scenario consists of two customers who each have a task AB, a provider
that has resource A and a provider that has resource B. In phase a, the customers
send their call for proposals to both providers. The providers check the orders,
find that they cannot complete them alone, and each sends two calls for proposals
(one for each call for proposals it received) in phase b to the other provider asking
for the resource type it cannot produce itself. They answer these calls in phase ¢
with two proposals each. This is followed by sending proposals for the complete
order AB to the customers in phase d. Each customer chooses a provider from the
two and sends a request for confirmation (phase e). In our case, each customer
chose a different provider. In phase f, the providers receive the requests; each
allocates its own resource for the order and sends a new request to the other
provider. However, in phase g both have to refuse the request, as they already
have allocated their resource and no longer have the capacity for the requested
type. The providers thus send refuses to the customers in phase h, releasing their
resources. Each customer now tries the provider it did not try before; two new
requests are sent. The situation now, in phase i, is analogous to the one depicted
in phase e, so the same deadlock can happen.

The timing in this example caused a failure because the providers, who should
have worked together to complete the order, have two separate “interfaces” to the
outside: each can be addressed by a different customer. If the providers had
formed an organization that has a single head, like a cooperation, this particular
scenario would not have caused a deadlock, as all communication would have
gone through the head. This is one reason why we expect that increasing the
number of organizations in a multiagent system might lower the rate of failed
task assignments. Of course, deadlocks can still happen in organizations: if the
timing of the messages happens to be such that reject-proposals, which cause the

6.1 Hypotheses 75

a b c
AB AB AB AB
2cfpB 2 prop A
=0
2cfp A 2 prop B
e f g
AB AB AB AB AB AB
prop AB prop AB request request

request
&) | (e
request

AB AB AB AB AB AB

| reques
refus refuse request

refuse
== &)
refuse

Figure 6.1: Example of a deadlock scenario.

recipient to release the resources it allocated for the order, do not arrive soon
enough, then the allocated resources are not available for incoming requests and
these requests have to be refused. The effect of organizations on the rate of failed
orders is not easy to predict, so the rate of failed orders is a good candidate for
a dependent variable. It will be interesting to see how it varies with the different
experimental configurations.

In sum, the reason why we expect hierarchically oriented organizational forms
to have a lower rate of failed orders is that they funnel the communication through
a central instance. In addition, those organizational forms need fewer messages
to assign the same tasks, and therefore there should be fewer possibilities for
deadlock situations to occur. We expect the rate of failed orders to be highest
for single agents and lowest for scenarios with corporations.

76 Experimental Evaluation

Note that agents do only act as organizations if the orders require products
specific to the organizations. Otherwise, they act as normal single agents. We
assume that the order situation matches the specific products of the organizations
to the extent that the organizations do actually have an effect on the system.

Hypothesis 2 In homogenous scenarios, the number of messages in the system
will be lower for more hierarchically oriented organizational forms.

Since the protocols for more hierarchically oriented organizational forms tend to
use fewer messages, it is reasonable to expect that the total number of messages
in such homogenous scenarios will decrease with increasing orientation towards a
hierarchy. However, this hypothesis still needs to be tested because it might be
possible that other factors influence the number of messages and interact with
the effect of slimmer protocols.

Hypothesis 3 In homogenous scenarios, a stricter message limit (number of
calls for proposals allowed to be sent per auction initiator) will increase the
rate of failed orders in scenarios with single agents more than in scenarios
with other organizational forms.

If the number of agents that can be sent a call for proposals is limited by the
system designer, it becomes more important that the agents asked for a proposal
have a high probability of being able to accomplish the task. Agents that form
an organization whose specific product matches the product requested by the
customer can rely more on their partners to have the capacity required for the
task or parts of it, and should therefore be less negatively affected by the higher
message limit than agents who have no such relationship to other providers. Along
this line of reasoning one might assume that more authoritative organizational
forms, like the group, where the head can rely on having the full capacity of
its partners at its disposal, will be even less affected than more market oriented
organizational forms.

Hypothesis 4 In scenarios where different organizational forms can coexist (het-
erogenous scenarios), the more hierarchically oriented organizational forms
will have a higher net income.

The decision of which organizational form to choose depends in large part on the
expected income of the organization. Self-interested agents who give up more of
their autonomy do so only if the payoff is likely to be higher. The order situation
has a large influence on the profitability of organizations. Otherwise, we would
only see one kind of organizational form in the real world, the most profitable
one. Since we expect that more hierarchically oriented organizations have a lower
rate of failed orders, we also expect that they will be more successful in getting
task assignments.

Hypothesis 5 In heterogenous scenarios, the presence of single agents will lower
the net income of other organizational forms.

6.1 Hypotheses 77

Single agents and organizations delegate those parts of the order which they can-
not fulfill themselves to external providers. Single agents usually have a lower
overall capacity than an organization, and are therefore likely to start more ex-
ternal auctions. They will send cfps to other providers asking for the part of the
order complementary to their own resources, including providers in organizations.
The organizations have formed to satisfy the demand of the customers, and their
specific products therefore probably do not match those the single agents ask for.
In such cases, the agents in the organizations process the orders as if they were
single agents, and lose any advantage the processing of orders as organizations
might have given them. Since more orders are processed by agents acting as single
agents, the net income of non-single organizational forms is likely to decrease.

Hypothesis 6 In heterogenous scenarios, a stricter message limit will reduce the
net income of single agents more than that of other organizational forms.

This is directly related to hypothesis 3, since agents and organizations that are
less successful in getting tasks assigned to them will have a lower income. Note
that hypothesis 3 makes a statement about the rate of failed orders, which is a
measure of the overall system performance, while hypothesis 6 says something
about the performance of individual organizational forms. This hypothesis
reflects the assumption that it should be better for agents to form organizations
if the order situation is stable enough.

Hypothesis 7 In scenarios where agents start out as single agents and can self-
organize to form new organizations, the rate of failed orders of the system
will be lower than if self-organization is not allowed.

The way we have implemented self-organization, agents will form increasingly hi-
erarchically oriented organizations as long as the order situation does not change.
If our first hypothesis turns out to be correct, we can expect more tasks assign-
ments to succeed because the newly formed organizations can process the orders
with fewer chances of a deadlock happening.

Hypothesis 8 In self-organization scenarios where agents start out as single
agents, the number of messages in the system will be lower than if self-
organization is not allowed.

The hierarchically oriented organizational forms require significantly fewer mes-
sages to process orders that request the product they have been built for than
more market oriented organizational forms and single agents. As long as the
order situation does not change, the provider agents will build increasingly hi-
erarchically oriented organizations, which should lower the number of messages
sent in the system.

78 Experimental Evaluation

Hypothesis 9 In self-organization scenarios where agents start out as single
agents, the profit per agent will be higher than if self-organization is not
allowed.

This is related to hypothesis 7, which states that self-organization will lower the
rate of failed orders. A lower rate of failed orders translates into more successful
task assignments, which means more money for provider agents. This hypothesis
tries to give a motivation for providers to self-organize if they want to maximize
their profit.

6.2 Experimental Design

In accordance with Cohen, we use the experimental design methodology known
from the social sciences [Cohen, 1995]. This methodology requires the researcher
to isolate independent and dependent variables and restate the hypotheses in
terms of causal relationships between these two groups. According to him, “un-
derstanding something is equivalent to explaining its variance, what statistical
methods do” [Cohen, 2002]. We therefore want to check what influence the fac-
tors we can control have on the factors we can not control. Due to the large
number of resulting variables and possibilities of interactions, we cannot examine
all possible influences. We cannot vary all causal factors through their number
of possible values; we have to keep some of them fixed and decide what factors
to concentrate on. In our experiments, we will not manipulate the variables de-
scribed in Section 6.2.3, Fized Factors, but we will vary the other independent
variables and measure the dependent variables in order to collect data that can
either support or reject our hypotheses. This section will describe the indepen-
dent variables, dependent variables, fixed factors, and the experimental settings
by specifying the configuration of the individual experiments.

6.2.1 Independent Variables

Independent variables are those controlled by the experimenter. The experi-
menter varies these variables across a range of values to create different experi-
mental conditions, and measures the effect of this manipulation on the variation
of other variables.

Self-Organization

This binary variable specifies whether agents are allowed to form new organi-
zations or dissolve the ones they are a member of. If set to false, agents will
remain in the organizational form that is given in their initial configuration files
throughout the experiment. If set to true, agents can change organizations they

6.2 Experimental Design 79

are in if they no longer seem to be efficient, and they can form new organizations
if the order situation seems favorable to it.

Homogeneity

This binary variable specifies whether the organizations in a setting are all of
the same form or whether different organizational forms can coexist at the same
time. Settings with only one organizational form allowed, where this variable has
the value true, are called homogenous scenarios. A value of false for this variable
specifies a heterogenous scenario. This variable does only have an effect in settings
where self-organization is not allowed. In settings with self-organization, the
dynamics of the re-organizing agents will almost inevitably lead to the coexistence
of different organizational forms.

Organizational Forms

This variable specifies the organizational forms in homogenous scenarios. It can
have one of the six values single agents, virtual enterprise, cooperation, strategic
network, group, and corporation. This variable has no effect in heterogenous
scenarios.

Existence of Single Agents

This binary variable specifies whether the scenario contains agents which are
not members of an organization or not. It is only considered in heterogenous
scenarios, and has no effect in homogenous ones.

Order Situation Change

This scalar variable determines the percentage of orders that change in a round
when the old order profile (the configuration of order that the customers emit)
is replaced by a new one. A value of 50 in this variable means that 50% of the
customers change the order they emit each round. Changes in the order profile
happen at certain rounds in the simulation, as described later in the section Fized
Factors. In our experiments, we will only use two values for this variable to limit
the number of experimental configurations to a manageable size. One change in
order situation will be 0%, the other 50%.

Message Limit

This scalar variable specifies the number of cfps agents can make to providers
outside their own organization when starting a new auction for a resource that
they or their organization cannot produce on their own. We briefly considered
having unlimited as a possible value for this variable, but it turned out that the

80 Experimental Evaluation

time required for a single round to complete with a reasonable number of agents
and a reasonable complexity of products (i.e., the number of elementary types
they are composed of) is too great to conduct a number of experiments sufficient
for statistical analysis. We only use message limits of 8 and 12 in our experiments.

6.2.2 Dependent Variables

Dependent variables are those that are not directly controlled and manipulated by
the experimenter, but are supposed to be affected by the independent variables.
Dependent variables are what is being measured and variation in their values has
to be traced back to different experimental configurations.

Rate of Failed Orders

The rate of failed orders is a scalar variable that measures the percentage of
customer orders in each round that were not assigned. It does not include orders
emitted by provider agents to subcontract other providers for a part of an order
composed of subtypes.

Net Income per Organizational Form

The net income per organizational form is a scalar variable that measures, for
each round, the income of an organizational form by summing up the net incomes
of all organizations of this form. The net income per organization is computed
by summing the income of all orders the organization has been assigned to this
round and subtracting the money it has paid to external agents.

Profit per Provider

The profit per provider is a scalar variable that measures, for each round, the
average profit over all providers. The profit for a single provider is computed
by the sum of profits for all orders it got assigned this round. The profit for a
single order, in turn, is computed by taking the difference between the money it
received for this order and its costs for the resources spent to complete it.

Number of Messages

We measure two kinds of messages in the system: auction-related messages and
self-organization-related messages. The number of auction-related messages is a
scalar variable that measures, for each round, the total number of auction-related
messages sent in the system. Auction-related messages are those messages that
are sent in accordance with one of the protocols Holonic Contract Net with Con-
firmation Protocol, Authority with Confirmation Protocol, or Authority without
Confirmation Protocol. Self-organization related messages are those messages

6.2 Experimental Design 81

that are sent in accordance with one of the protocols Self-organization Protocol
for Creating New Organizations, Self-organization Protocol for Existing Organi-
zations, or Voting Protocol. Other messages, like communication between the
agents and the agent controlling the simulation, are not counted.

6.2.3 Fixed Factors

The independent variables listed above are not the only ones that are under the
experimenter’s control and affect the dependent variables. A number of other
factors have a significant causal influence and could be manipulated to study the
relationships of factors in our market-based model more thoroughly. However,
we already have quite a number of different configurations each specifying an
experimental scenario, and for each configuration we need data from several ex-
perimental runs to draw statistically valid conclusions. The experimental runs
differ even if the configuration is the same, because there are random influences
like the order arriving messages. Considering that each run takes a lot of compu-
tational resources, we had to limit our empirical examinations to manipulating
only a subset of controllable variables. We had to choose plausible values for the
rest and keep them fixed throughout the experiments. If more time was avail-
able, a deeper investigation might inquire into how these choices influenced our
results. We now present a list of factors that were kept fixed in our experiments,
but could be manipulated in future evaluations of the model.

Period of Order Situation Change

The time at which we change the order situation determines how much time the
agents have to adopt to the new situation before it changes again. We chose
a time frame of 50 rounds between the start of the simulation and the order
situation change, as it turned out that 50 rounds are enough to stabilize the
system’s behavior to a reasonable extent.

Parameters of Self-Organization

The choice when to build a new organization with other providers is currently
coded as thresholds for trade volume between agents. It is likely that varying
these thresholds might influence the results somewhat, but this influence is mostly
limited to the speed of adaptation, and given the relatively large period of order
situation change, agents have enough time to adapt to a given order situation.
The chosen values should therefore be representative enough for our model of
self-organization. The threshold to upgrade is 0.6, for downgrade 0.2. The mini-
mum duration for an organization is five rounds. The threshold for building new
organizations is 0.3.

82 Experimental Evaluation

Trading Parameters of Customer and Provider Agents

The customer and provider agents in our experiments have always the same
configuration of resources, cost, demand, profit parameters, and gift parameters.
Provider agents can each produce one of four elementary resource types, in a
quantity of one unit per round. There are three cost levels: 4, 5, and 6 Euros
per unit. The profit parameter for all agents, customers and providers, is set to
1.1, and the gift parameter to 1.0. At this value, the gift parameter is neutral,
i.e. the agents act in the same way as if there was no gift mechanism in the
system. They neither give gifts nor consider the gift history when dealing with
other agents. We therefore did not examine gift giving in our experiments.

Preference for Known Agents

The preference for provider agents has an impact when either selecting agents to
send a cfp to or determining the willingness to form an organization with other
agents. This preference is computed by taking into account the trade history
between the agents. Each agent assigns a scalar value to provider agents it
knows by summing up the past trade volume of the elementary types present in
the current order. There might be different ways of computing a preference value
based on order history, but the resulting ordering of provider agents should not
be that much different.

6.2.4 Experimental Scenarios

This section describes the individual experimental scenarios, specifying what vari-
ables we varied and measured in each scenario and the values for the independent
variables involved. Appendix A gives an overview of the configurations in tabular
form.

6.2.5 Scenario for Hypotheses 1-3

This scenario contains 60 provider agents for each of the types A, B, and C. Each
type occurres in the price levels 4, 5, and 6. There are 60 customer agents emitting
one order of type ABC each round, with the deadline of the current round. There
is no self-organization allowed. There are six different configurations, one for each
organizational form. In each configuration, the organizations are of the same
form. Each organization has three members agents, one for each of the three
types. One member agent has cost 4, one cost 5, and one cost 6. The message
limit for hypotheses 1 and 2 is 12, for hypothesis 3 the message limit is varied
and takes the value 8 in one set of configurations and 12 in another.

6.3 Results and Discussion 83

6.2.6 Scenario for Hypothesis 4

The agents are the same as for the first three hypotheses. The message limit is set
to 12, there is no self-organization allowed. There are no single agents; all agents
are organized in non-overlapping organizations. There are twelve organizations
of each of the five organizational forms. The organization size, type and price
configuration is the same as for hypotheses 1-3.

6.2.7 Scenario for Hypothesis 5 and 6

This scenario contains 36 provider agents for each of the types A, B, and C,
each type occurring in the price levels 4, 5, and 6. There are 36 customer agents
emitting one order of type ABC each round. There is no self-organization allowed.
The scenario contains all five organizational forms and single agents. There are
six organizations of each form and 18 single agents. The organization size, type
and price configuration is the same as for hypotheses 1-3. The message limit is
12 for hypothesis 5, for hypothesis 6 the message limit is varied and takes the
value 8 in one set configurations and 12 in another.

6.2.8 Scenario for Hypotheses 7-9

This scenario contains 30 providers of each of the types A and D, and 60 providers
of each of the types B and C. Each type occurs in the price levels 4, 5, and 6.
There are 30 customers who emit order ABC in each round and 30 customers
who emit order ABC in rounds 1-50 and order BCD in rounds 51-100. The
message limit is 12. There are no organizations at the start. In one configuration
self-organization is allowed, but not in the other.

6.3 Results and Discussion

This section describes the results for the tests of each hypothesis and discusses
them. Each graph is a summation over 100 simulation runs. The results are
summarized at the end of the section.

6.3.1 Hypothesis 1

In scenarios where all organizations are of the same form
(homogenous scenarios), the rate of failed orders in the system will
be lower for more hierarchically oriented organizational forms.

Figure 6.2 shows the rate of failed orders of all six organizational forms in one
setting. The rate decreases for all organizational forms, because the agents learn
which providers can provide which resources by building up their preferences in

84 Experimental Evaluation

0.25 T T T T T T T

T
Single
Virtual Enterprise -------
Cooperation --------
Strategic Network -
Group -—---
0z r Corporation -------
0.15 |
0.1 | |
0.05 T |
e e o s

40 50 60 70 80 90 100

Figure 6.2: Rate of failed orders of all six organizational forms. Single agents are
least successful in assigning orders.

the agent models. The rate of failed orders is significantly higher for single agents
than for the other organizational forms.

Figure 6.3 leaves out the single agents and zooms in on the other five or-
ganizational forms. The organizational forms build three clusters: the clusters
differ in rate of failed orders from each other, but organizational forms within
each cluster do not. The first cluster is formed by the virtual enterprise and the
cooperation. These two organizational forms are the least effective of the five
in terms of rate of failed orders, but still significantly better than single agents.
The fact that the communication is channeled through one agent in the case of
the cooperation and through several in the case of the virtual enterprise does not
seem to influence the rate. The strategic network forms a cluster on its own,
its efficiency being somewhere between that of the virtual enterprise/cooperation
cluster and the group/corporation cluster. The increase of efficiency over the first
cluster might be explained by the reduced protocol; unlike the virtual enterprise
and the cooperation, the strategic network does not need to collect proposals
from its body agents. It therefore seems that the proposal phase is a potential
cause of deadlocks. The group and corporation have an even lower rate of failed
orders, probably because they use a protocol that has neither a proposal phase
nor a confirmation phase. The communication of informing the body agent about
an assigned order that is necessary in the group but not the corporation does not
seem to have an effect on the rate of failed orders. This is plausible, because un-
like the proposal and confirmation communication, it cannot cause any conflicts

6.3 Results and Discussion 85

0.1 T T T T T T T N T T
Virtual Enterprise
Cooperation -------
0.09 | Strategic Network -------- -
Group -
Corporation -----
0.08
0.07
0.06
0.05
0.04 B\
003 i
0.02 |4
\
0 I o R S e L I I I

0 10 20 30 40 50 60 70 80 90 100

Figure 6.3: Rate of failed orders of the non-single organizational forms. Virtual
Enterprise and Cooperation are least, Group and Corporation most successful.
The Strategic Network falls between the two groups.

in resource allocation with unfortunate message timing, which happened in the
deadlock example described in Section 6.1.

6.3.2 Hypothesis 2

In homogenous scenarios, the number of messages in the system will
be lower for more hierarchically oriented organizational forms.

Figure 6.4 shows the number of messages of all six organizational forms to-
gether. The number of messages is significantly higher for single agents than
for the other organizational forms. It stays relatively constant for the five non-
single organizational forms, but increases slightly for single agents. Simulations
of variations of this scenario showed that the increase disappears if either a) all
providers have the same price b) there is no message limit or c) the agents do not
learn preferences. The explanation for the increase is therefore that the agents,
by learning preferences, increasingly only ask agents who have the requested re-
sources, hence get more proposals instead of refusals, and due to the varying costs
receive more second proposals than agrees, which often causes further requests to
agents with cheaper proposals. The non-single organizational forms do not show
the increase because they all can produce the product for the same price, as each
organization has exactly one agent of one of the three price classes.

86 Experimental Evaluation

T

Single

Virtual Enterprise ------- B
Cooperation --------
Strategic Network -
Group ----
Corporation -------

300000

250000

200000 -

150000

100000

50000

e e e
0 10 20 30 40 50 60 70 80 90 100

Figure 6.4: Number of messages of all six organizational forms. The number is
highest for single agents, and increases with time.

Figure 6.5 leaves out the single agents and zooms in on the other five organi-
zational forms. It shows that the number of messages is about the same for the
virtual enterprise and the cooperation, with both being significantly less efficient
than the strategic network, the group, and the corporation. The explanation for
this is that the virtual enterprise and the cooperation are both based on a full in-
ternal HCNCP, whereas the strategic network leaves out the proposal phase, the
group the proposal and the confirmation phase, and the corporation all internal
communication.

6.3.3 Hypothesis 3

In homogenous scenarios, a stricter message limit (number of calls
for proposals allowed to be sent per auction initiator) will increase
the rate of failed orders in scenarios with single agents more than in
scenarios with other organizational forms.

Figure 6.6 shows, for all organizational forms, the difference between the rate
of failed orders in scenarios with message limit 12 and 8. The absolute difference
is significantly larger for single agents than for the other organizational forms.
Plotting the relative difference is not clarifying because the values of failed orders
for the non-single organizational forms fluctuate around zero, causing the graph
for the relative difference to behave chaotically. The reason why the difference

6.3 Results and Discussion 87

18000 T T T T T T

T T T
Virtual Enterprise

Cooperation -------

16000 Strategic Nth\;\gour;j ,,,,, -

Corporation -----

12000 -

10000

8000
6000 -

4000

2000 _

0 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Figure 6.5: Number of messages of the non-single organizational forms. Virtual
Enterprise and Cooperation are less efficient than the other three organizational
forms. More hierarchical forms use fewer messages.

is negative for some organizational forms is probably that a message limit that
allows more messages to be sent allows more deadlocks to occur.

6.3.4 Hypothesis 4

In scenarios where different organizational forms can coexist
(heterogenous scenarios), the more hierarchically oriented organiza-
tional forms will have a higher net income.

Figure 6.7 shows the income of the five organizational forms, when competing
in the same scenario. The income does not differ significantly, with the exception
of the corporation. The reason why the corporation performs so poorly, especially
at the beginning, is that it consists of only one agent, while the other organiza-
tional forms consist of three. Since at the beginning all provider agents are sent
a cfp with the same probability, the corporation is less likely to be included in
an auction when the number of messages is limited. As the agents build up their
preferences however, the corporation’s income rises towards the level of the other
organizational forms.

It seems that the advantage of a lower rate of failed orders of more hierarchi-
cally oriented organizations in homogenous scenarios does not translate into an
increased income in scenarios where they have to compete with other organiza-

88 Experimental Evaluation

SingleI
Virtual Enterprise -------
Cooperation -------- i
- Strategic Network -
Group -~
0.03 Corporation ------- |
0.025 f |
0.02 1

60 70 80 90 100

Figure 6.6: Difference between rate of failed orders for message limits 8 and 12.
Single Agents experience the highest drop in successful task assignments when
fewer messages are allowed.

tional forms. It is however possible that this can be attributed to a ceiling effect,
i.e., the rate of failed orders in this heterogenous scenario is minimal, and that
the hypothesis would turn out to be true for another part of the configuration
space that we have not examined.

6.3.5 Hypothesis 5

In heterogenous scenarios, the presence of single agents will lower the
net income of other organizational forms.

Figure 6.8 shows the net income of all six organizational forms. The income of
the three product-based organizational forms, virtual enterprise, cooperation, and
strategic network, quickly falls to very low levels. The reason for this is that the
single agents introduce a number of sub-orders into the system that is far greater
than the number of original orders, thus the product of most incoming orders
that an agent as part of an organization receives does not match the product of
its organization. Most products are therefore not processed by product-specific
organizations. The non-product specific organizational forms group and corpo-
ration are not that vulnerable to the disruptive presence of single agents, hence
their income does not drop similarly. Since most agents act as single agents, the
income of the single agent form is higher than of the group and corporation.

6.3 Results and Discussion 89

250 T T T T T T T N T T
Virtual Enterprise
Cooperation -------
Strategic Network --------
Group -
Corporation -----
200 _ . e B o T
150 |+ .
I
100 —
50 —
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Figure 6.7: Income of the organizational forms in a heterogenous scenario without
single agents. All are roughly at the same level, except for the Corporation, which
is slightly worse at the beginning.

Figure 6.9 leaves out the single agents and zooms in on the other five organi-
zational forms. It shows that the income for corporation is slightly better than
the income for groups, probably because its smaller protocol has a lower chance
of deadlocks.

6.3.6 Hypothesis 6

In heterogenous scenarios, a stricter message limit will reduce the net
income of single agents more than that of other organizational forms.

Figure 6.10 shows the difference between the income in scenarios with message
limit 12 and 8, for all organizational forms. The advantage of organizations over
single agents in income difference seems to be limited to the first third of the
simulation. When the agents have learned better preferences, the single agents
get more call for proposals matching their resources and become more efficient at
disrupting the product-specific organizational forms. This can be seen very clearly
in the fact that at the beginning, the curve for the product-specific organizational
forms is strongly negative and mirrors the curve for the single agents. The non-
product-specific organizational forms group and corporation are less affected.

90 Experimental Evaluation

T T
L Single 4
250 Virtual Enterprise -------
Cooperation --------
Strategic Network -
Group ----
Corporation -------

200 //WWNV‘/\—‘_‘A/\/\WA -

150 - -

100 - -

0 10 20 30 40 50 60 70 80 90 100

Figure 6.8: Income of all six organizational forms in a heterogenous scenario with
single agents. Single agents have the highest income.

6.3.7 Hypothesis 7

In scenarios where agents start out as single agents and can self-
organize to form new organizations, the rate of failed orders of the
system will be lower than if self-organization is not allowed.

Figure 6.11 shows the rate of failed orders in the system with and without self-
organization. Self-organization does not seem to provide the expected reduction
rate of failed orders. Both show a falling tendency, which can be explained by
the learning of preferences. The preferences are also responsible for the fact that
the rate does not increase after the order situation has changed. The agents
have learned which provider can do which resource, so that an order situation
change in which most of the elementary types are the same as before does not
result in more failed orders. The potential advantage in reduction of the rate of
failed orders of organizations that has been shown in hypothesis 1 seems to be
neutralized in scenarios with self-organization, probably because at most stages in
the simulation there are still single agents. These single agents have a disruptive
effect, as indicated by the results of the experiments for hypothesis 5.

6.3.8 Hypothesis 8

In self-organization scenarios where agents start out as single agents,
the number of messages per system will be lower than if self-

6.3 Results and Discussion 91

80 T T T T T T

T T
Virtual Enterprise
Cooperation -------
Strategic Network --------
70 - Group - 4
; Corporation -----

60 [-

50 .
S N 2 N\
R ~. s TN A

,,,,,,,,,

w0l S . . -]

B e I G A Dbty

0 10 20 30 40 50 60 70 80 90 100

Figure 6.9: Income of the non-single organizational forms in a heterogenous sce-
nario with single agents. Except for the Group and the Corporation, the income
of all organizational forms quickly falls to very low levels.

organization s not allowed.

Figure 6.12 shows the number of messages in the system with and with-
out self-organization. The number of messages is significantly lower when self-
organization is allowed. In both cases, the number increases due the reasons
discussed in hypotheses . The advantage of self-organization is lower after the
order change, most likely because the corporations, which have formed in the old
order situation, cannot resolve and adapt to the new situation, unlike the other
organizational forms.

The messages counted in figure 6.12 are only the auction-related messages.
Figure 6.13 shows the number of messages that are used in communication for
self-organization. This number is significantly below the difference between the
graphs shown in figure 6.12, so the overall number of messages in self-organizing
systems is still significantly lower than in non-self-organizing systems.

6.3.9 Hypothesis 9

In self-organization scenarios where agents start out as single agents,
the profit per agent will be higher than if self-organization is not al-
lowed.

92 Experimental Evaluation

40 T T T T T T T

SingleI

Virtual Enterprise -------
Cooperation --------

Strategic Network -
Group ----

p _
30 Corporation -------

220 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Figure 6.10: Income difference between scenarios with message limit 8 and 12 for
all organizational forms. The more negative effect of a stricter message limit on
single agents only shows at the beginning.

Figure 6.14 shows the profit per provider with and without self-organization.
The two graphs do not differ in the way predicted by the hypothesis. The profit
per provider is about the same with and without self-organization. This is re-
lated to the results of hypothesis 7: since self-organization does not provide an
advantage in the rate of failed orders, it also does not increase the profit per
provider.

6.3.10 Summary

Many of the tested hypotheses turned out the way we predicted, while some
showed surprising results. The predicted results are:

e Organizations have advantages in terms of number of messages and rate of
failed orders in homogenous scenarios.

e In general, the more hierarchically oriented an organization, the lower its
rate of failed orders and the number of messages in homogenous scenarios.

e Organizations are less affected by a tighter message limit than single agents
both in heterogenous and homogenous scenarios.

e Single agents disrupt the efficiency of product-specific organizations.

6.3 Results and Discussion 93

0.6 T T T T T T T T

noSO ——
S ,,,,,,,
05 [
04 -
03 -
0.2 -
0.1 4
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Figure 6.11: Rate of failed orders in the system with and without self-
organization. The rate does not seem to be affected by self-organization.

e Self-organization reduces the number of messages.
The unexpected results are:

e The virtual enterprise and the cooperation do not differ much in terms of
rate of failed orders and number of messages.

e The net income of organizational forms in heterogenous scenarios does not
differ significantly.

e Self-organization does not influence the rate of failed orders or the profit
per provider.

On first sight it seems that the group is the best organizational form to use
in all cases. However, such a conclusion is not warranted by our experiments.
First, we did not use overlapping organizations in the scenarios without self-
organization, which means that a significant advantage of “lower” organizational
forms over the group was neutralized. Second, we did not investigate whether
self-organization with Group as organizational form allowed is better for the
system or individual agents than self-organization with Group not allowed, it
is therefore not clear what importance the Group form has for self-organizing
systems. Experiments in this direction are an interesting possibility for future
work.

94 Experimental Evaluation

180000

160000

140000

120000

100000 b

80000

60000

40000

20000

0 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Figure 6.12: Number of auction-related messages in the system with and without
self-organization. Self-organization reduces the number of messages sent in the
system by several ten thousands.

100

T T
SO messages

90
80
70
60
50
40
30 -
20

10

0 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Figure 6.13: Number of self-organization messages. This number is around 100,
which is much lower than the tens of thousands auction-related messages saved
by self-organization.

6.3 Results and Discussion 95

0.3 T T T T T T T T

SO -
0.25 | 4
02| .
0.15 |- .
01 .
0.05 - 4

O 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Figure 6.14: Profit per provider with and without self-organization. Self-
organization does not seem to influence the profit.

96

Experimental Evaluation

Chapter 7

Conclusions

This chapter summarizes the contributions of this thesis and lists further research
questions that might be worth investigating based on the current work.

7.1 Summary

We describe how the three major goals of the thesis have been met: the specifi-
cation of organizational forms and a mechanism for self-organization, the devel-
opment of protocols, and the experimental evaluation.

7.1.1 Specification of Organizational Forms and a Mecha-
nism for Self-organization

We chose six different organizational forms from sociological theories and gave
a detailed specification for their implementation in a multiagent system. The
six organizational forms are: single agents, the virtual enterprise, the coopera-
tion, the strategic network, the group, and the corporation. These organizational
forms differ from each other in their orientation towards a market or a hierar-
chy. The stronger the orientation towards a hierarchy, the more do the agents
commit themselves to give away part of their autonomy. We have also specified
a mechanism for forming new organizations and adapting existing ones to new
situations. The mechanism for self-organization is supposed to allow the agents
to increase some local or global performance by acting on locally available in-
formation. The premise of the thesis was that using the organizational forms
specified increases can increase the efficiency of multiagent systems and that the
agents can effectively decide on their own how to organize to reach this goal.

98 Conclusions

7.1.2 Development of Protocols

In order to ensure interoperability of different systems using the concepts pro-
posed in the thesis and to facilitate compatibility with other multiagent projects,
we used the FIPA standard to realize all agent communication. We extended
existing protocols and developed new ones to enable the different organizational
forms to efficiently solve their communication tasks. The Holonic Contract Net
with Confirmation Protocol is an extension of the traditional Contract Net Pro-
tocol. It is used in a reduced form in the Authority Protocol with Confirmation
and the Authority Protocol without Confirmation. Among the new protocols
are protocols for coordinating the updating process of existing organizations, the
forming of new organizations, and the election of a new head agent.

7.1.3 Experimental Evaluation

To test whether the concepts proposed can be usefully applied to multiagent
systems, we have defined a number of performance measures and investigated
the effect of different organizational forms and of the process of self-organization
on these measures. The measures are the number of messages sent in the system,
the rate of failed task assignments, the net income of organizational forms, and
the average profit of provider agents.

Our experimental evaluation showed that organizations and self-organization
can increase the efficiency of multiagent systems. Whether to pre-design the
organizations or use self-organization depends on the specific conditions of the
scenario. Our results suggest that if the order situation does not change and it
is important to have a low rate of failed task assignments and few messages used
for the auctions, it is advisable to either put all agents into organizations such
that no single agents are left or, if single agents have to be present, make all
organizations either groups or corporations. If the order situation does change,
then starting all agents as single agents and allowing them to self-organize will
still provide the system with the advantage of using fewer messages, without
increasing the number of failed task assignments.

7.2 Future Work

Organization in multiagent system is a wide topic and the present thesis could
only touch a fraction of the unanswered research questions in this field. Almost
every aspect of the system we used opens a plethora of further research possibil-
ities. We list some of them here, although the list is not complete.

Parameter Variation The most obvious further research would involve varying
the parameters that were kept fixed in the current implementation and in-
vestigating the effect of the variations on the performance measures. Exam-

7.2 Future Work 99

ples for these fixed parameters are the thresholds for self-organizations, the
resource capacities of provider agents, the deadlines for the tasks, the com-
plexity of orders, the number of agents, and the customer demand /available
provider resources relationship.

Intra-organizational Differences The organizations we specified divide the
member agents into two classes: head and body agents. The difference
in roles has two main effects: head agents interact stronger with the out-
side, reaping potential benefits like a better reputation or higher customer
preference as providers to assign tasks to. Secondly, the different profit dis-
tribution models for each organizational forms result in different provider
profits within the organization. Future research might investigate the con-
sequences of these differences in more detail.

More Complex Order Changes In the scenarios we investigated, the order
situation either did not change at all or consisted in a switch from one stable
profile to another. A possible alternative is to have a certain percentage of
orders be determined randomly. For example, 90% of the orders might be

"ABC”, while the remaining 10% would be chosen randomly from the set
{BCD, ABD, ACD}.

Failures In our scenarios providers never fail to complete an accepted order,
their failure probability is 0%. If one increases this failure probability,
new concepts like reputation and trust become interesting. Agents will
have to learn which other agents are reliable and which have a high failure
probability.

Dropouts Organizations might prove to be resilient against agents that at some
point in the simulation drop out seizing all activity and no longer responding
to messages. Organization heads that find one of their body agents has
dropped out could use this information to keep the remaining orders that
this organization processes from failing by reassigning parts of them.

Gift Giving Although we have implemented the mechanisms for gift giving, we
did not have the time to investigate its effects on the performance measures.
Gift giving is a concept that might be especially interesting if one also uses
the concepts trust and reputation.

Punishments We have specified the organizations in the ADICO grammar,
which is flexible enough to include punishments for violation of rules. For
example, a body agent of a strategic network that fails to forward a call
for proposal to its head and decides to process the order itself might be
required to pay a certain amount of money to the head if its behavior is
found out. Punishments do only make sense however if the agents have the

100 Conclusions

capacity to reason about the consequences of their behavior, which would
introduce a complexity that is beyond the scope of the current work.

Recursive Structures The self-organization mechanism we implemented re-
sults in flat organizational structures: organizations can overlap, but an
organization can not be the body agent of another organization. If this re-
striction is dropped, agents can organize in fractal structures that increase
the complexity of the system.

AT Techniques The agents could be made more complex by implementing tech-
niques known from research in artificial intelligence: using different kinds
of logic, genetic algorithms, neural nets, etc. More complex agents might
be better able to adapt their organizational structure to the current and
expected future situations.

Better Internal Auctions The virtual enterprise and the cooperation might
be made more efficient if the head of the organization would only ask those
agents to complete an order who actually have the resources to do it. This
would require that the agents tell each other about the type of resources
they can do e.g. during the formation of the organization.

Customer Profit In measuring profit, we concentrated on the side of the
providers. An extension of this research would be the investigation of how
profitable the concept of organizations and self-organization is for the cus-
tomers.

Customer Organizations Similar to the last point, one could investigate what
kind of organizations on customer side would increase the performance of
the system.

Choice on Provider Side In our scenarios, customers choose from a number
of providers. But it is principally also possible that the providers collect
call for proposals from different customers and choose which customer to
send a proposal to. It might be interesting to investigate the effects of
organizations on market systems where providers have more complex choice
options.

Broadcasting the Winner An alternative to the learning of preferences used
here is the method of sending the name of the winner of an auction in the
reject-proposal messages. In this way, the other agents get to know who is
a successful provider and therefore might be a valuable partner in a new
organization.

Appendix A

Configuration of the Experiments

The left table shows provider configuration, the right table customer configura-
tion. Customers can emit one type of order in rounds 1-50 and another type in
rounds 51-100.

Agent configurations for hypotheses 1-4:

costs
4

quantity | t
20
20
20
20
20
20
20
20
20

8y

quantity | type 1 — 50 | type 51 — 100
60 ABC ABC

QQQEwm > =S

O O x| Oy O x| OY Ot

Agent configurations for hypothesis 5 and 6:

costs
4

quantity | t
12
12
12
12
12
12
12
12
12

8y

quantity | type 1 — 50 | type 51 — 100
36 ABC ABC

QQQEw®E > =S

O CU O O Oy Ot

102

Configuration of the Experiments

Agent configurations for hypotheses 7-9:

quantity | t

®

costs

10
10
10

4

20
20
20

quantity

type 1 — 50

type 51 — 100

30

20
20
20

30

ABC
ABC

ABC
BCD

10
10
10

DOgQQQEmEEE S

O O IO O Ix|OY O x| OY Ot

Configurations specific to the hypotheses:
In the table, set notation means that the corresponding variable takes on one
of the values of the set for a configuration. For example, hypothesis 3 has 12
different configurations, because message limit has two possible values and the
variable organizations at start six.

hypothesis SO? message limit organizations at start
1 no 12 {none, 60 ve, 60 coo, 60 sn, 60 grp, 60 cor}
2 no 12 {none, 60 ve, 60 coo, 60 sn, 60 grp, 60 cor}
3 no {8,12} {none, 60 ve, 60 coo, 60 sn, 60 grp, 60 cor}
4 no 12 12 ve 12 coop 12 sn 12 grp 12 cor
) no 12 6 ve 6 coop 6 sn 6 grp 6 cor
6 no {8,12} 6 ve 6 coop 6 sn 6 grp 6 cor
7 {yes, no} 12 none
8 {ves, no} 12 none
9 {yes, no} 12 none

Abbreviations:

SO = self-organization

sin = single

ve = virtual enterprise
€00 = cooperation
sn = strategic network

group = group

cor = corporation

103

When organizations are specified at the start, they always have three member
agents, one for each type. One member agent has costs 4, one costs 5, and one
costs 6.

104 Configuration of the Experiments

Bibliography

[André et al., 1990] André, J., A. Mouginot, and M. Venet (1990). A framework
for dynamic reorganization. In Proceedings of the 9th European Conference on
Artificial Intelligence, pages 31-37.

[Ashby, 1947] Ashby, R. (1947). Principles of the self-organizing dynamic system.
Journal of General Psychology, 37:125—-128.

[Barnard, 1968| Barnard, C. I. (1968). The Functions of the Ezecutive. Harvard,
Cambridge, 30th anniversary edition.

[Biirckert et al., 1998| Biirckert, H.-J., Fischer, K., and Vierke, G. (1998). Trans-
portation scheduling with holonic mas—the teletruck approach. In Proceedings

of the Third International Conference on Practical Applications of Intelligent
Agents and Multiagents (PAAM’98).

[Bratman et al., 1988] Bratman, M. E., Israel, D., and Pollac, M. E. (1988).
Plans and resource-bounded practical reasoning. Computational Intelligence,
4:349-355.

[Brooks and Durfee, 2002] Brooks, C. and Durfee, E. (2002). Congregating and
market formation. In Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 96-103.

|Brooks, 1986] Brooks, R. (1986). A robust layered control system for a mobile
robot. IEEE Journal of Robotics and Automation, 2(1):14-23.

[Biirkert et al., 2000] Biirkert, H., Fischer, K., and Vierke, G. (2000). Holonic
transport scheduling with TELETRUCK. Applied Artificial Intelligence,
14(7):697-726.

[Bussmann, 1998] Bussmann, S. (1998). An agent-oriented architecture for
holonic manufacturing control. In Proceedings of 1st Int. Workshop on In-
telligent Manufacturing Systems, pages 1-12.

[C. Gerber, 1999] C. Gerber, J. Siekmann, G. V. (1999). Holonic multi-agent
systems. Technical report, German Research Center for Artificial Intelligence
(DFKI).

106 BIBLIOGRAPHY

[Camarinha-Matos and Afsarmanesh, 1998] Camarinha-Matos, R. R. L. and Af-
sarmanesh, H. (1998). Multi-agent perspectives to agile scheduling. In Rabelo,
R., Camarinha-Matos, L., and Afsarmanesh, H., editors, Intelligent Systems
for Manufacturing, pages 51-66. Kluwer Academic Publishers.

|Castelfranchi and Falcone, 1998| Castelfranchi, C. and Falcone, R. (1998). To-
wards a theory of delegation for agent-based systems. Robotics and Au-
tonomous Systems, 24:141-157.

[Cohen, 1995] Cohen, P. (1995). Empirical Methods for Artificial Intelligence.
The MIT Press, Cambridge, MA.

[Cohen, 2002] Cohen, P. (2002). Empirical methods for analysis of agent sys-
tems. Tutorial held at the First International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2002).

|Cohen and Levesque, 1987] Cohen, P. and Levesque, H. (1987). Intenion =
choice + commitment. In Proceedings AAAI-87, pages 410-415.

|Crawford and Ostrom, 1995] Crawford, S. E. S. and Ostrom, E. (1995). A gram-
mar of institutions. American Political Science Review, 89(3):582-599.

[Durfee et al., 1989] Durfee, E., Lesser, V., and Corkill, D. (1989). Cooperative
distributed problem solving. In Barr, A., Cohen, P., and Feigenbaum, E.,
editors, The Handbook of Artificial Intelligence, volume 4. Addison Wesley.

|Excelente-Toledo et al., 2001] Excelente-Toledo, C. B., Bourne, R. A., and Jen-
nings, N. R. (2001). Reasoning about commitments and penalties for coor-
dination between autonomous agents. In Miiller, J. P., Andre, E., Sen, S.,
and Frasson, C., editors, Proceedings of the Fifth International Conference on
Autonomous Agents, pages 131-138, Montreal, Canada. ACM Press.

[Finin et al., 1994] Finin, T., Fritzson, R., McKay, D., and McEntire, R. (1994).
KQML as an Agent Communication Language. In Adam, N., Bhargava, B., and
Yesha, Y., editors, Proceedings of the 3rd International Conference on Infor-
mation and Knowledge Management (CIKM’94), pages 456-463, Gaithersburg,
MD, USA. ACM Press.

|[FIPA, 2001] FIPA (2001). The FIPA Contract Net interaction specification.
http://www.fipa.org/specs/fipa00029/XC00029F .html.

[FIPA, 2002] FIPA (2002). The foundation for intelligent physical agents.
|[FIPA-OS, 2002| FIPA-OS (2002). http://fipa-os.sourceforge.net/.

|Fischer, 1999a| Fischer, K. (1999a). Agent-based design of holonic manufactur-
ing systems. Journal of Robotics and Autonomous Systems, 27:3-13.

BIBLIOGRAPHY 107

[Fischer, 1999b] Fischer, K. (1999b). Holonic multiagent systems — theory and
applications. In Proceedings of the 9th Portuguese Conference on Progress in
Artificial Intelligence (EPIA-99), pages 34—48.

[Fischer et al., 1995] Fischer, K., Miiller, J. P., Pischel, M., and Schier, D. (1995).
A model for cooperative transportation scheduling. In Proceedings of the First

International Conference on Multiagent Systems, pages 109-116, Menlo park,
California. AAAI Press / MIT Press.

|[Fonseca et al., 2001] Fonseca, S. P., Griss, M. L., and Letsinger, R. (2001).
Agent Behavior Architectures - A MAS Framework Comparison. Technical
Report HPL-2001-332, Hewlett Packard Labs.

[Freichel, 1992] Freichel, S. L. K. (1992). Organisation von Logistikservice-
Netzwerken. Erich Schmidt Verlag.

|Garrido and Sycara, 1996] Garrido, L. and Sycara, K. (1996). Multi-agent meet-
ing scheduling: preliminary results. In 1996 International Conference on Multi-
Agent Systems (ICMAS °96), pages 95 — 102.

|Gasser, 1991] Gasser, L. (1991). Social conceptions of knowledge and action:
DATI foundations and open systems semantics. Artificial Intelligence, 47:107-
138.

[Genesereth and Ketchpel, 1997] Genesereth, M. R. and Ketchpel, S. P. (1997).
Software agents. Communications of the ACM, 37(7).

|Gerber et al., 2001] Gerber, A., Klusch, M., Ruf, C., and Zinnikus, I. (2001).
Holonic Agents for the Simulation of Supply Webs. In Proceedings of the 5th
International Conference on Autonomous Agents.

|Gouldner, 1961] Gouldner, A. W. (1961). The norm of reciprocity. American
Sociological Review, 25:161-179.

|Guide, 2001] Guide (2001). FIPA-OS Developers Guide. fipa-os.
sourceforge.net/docs/Developers_Guide.pdf.

|Guttman and Maes, 1998] Guttman, R. H. and Maes, P. (1998). Cooperative vs.
competitive multi-agent negotiations in retail electronic commerce. In Proceed-

ings of the Second International Workshop on Cooperative Information Agents
(CIA’98), Paris, France.

|Hales and Barker, 2000] Hales, K. and Barker, J. (2000). Searching for the vir-
tual enterprise. Working Paper, http://www.it.bond.edu.au/publications/.

|JADE, 2002] JADE (2002). http://sharon.cselt.it/projects/jade/.

108 BIBLIOGRAPHY

[Jarillo, 1988| Jarillo, J. C. (1988). On strategic networks. Strategic Management
Journal, 9:31-41.

[Jennings, 1999] Jennings, N. (1999). Agent-based computing: Promise and per-
ils. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence, pages 1429-1436.

[Jennings et al., 1998] Jennings, N., Sycara, K., and Wooldridge, M. (1998). A
roadmap of agent research and development. Autonomous Agents and Multi-
Agent Systems Journal, 1(1):7-38.

[JESS, 2002] JESS (2002). http://http://herzberg.ca.sandia.gov/jess/.

|[Kemmner and Gillessen, 2000] Kemmner, G. and Gillessen, A. (2000). Virtuelle
Unternehmen. Physica-Verlag.

[Klir, 1991] Klir, G. (1991). Facets of Systems Science. Plenum Press.

[Knabe et al., 2002] Knabe, T., Schillo, M., and Fischer, K. (2002). Improve-
ments to the FIPA contract net protocol for performance increase and cascad-
ing applications. In International Workshop for Multi- Agent Interoperability at
the German Conference on AI (KI-2002), Aachen, Germany.

|Koestler, 1967] Koestler, A. (1967). The Ghost in the Machine. Hutchinson &
Co, London.

|[Liu and Layland, 1973] Liu, C. and Layland, J. (1973). Scheduling algorithms
for multi-programming in a hard real-time environment. Journal of the Asso-
ciation of Computer Machinery, 20(3):46—61.

[Malsch, 2001] Malsch, T. (2001). Naming the unnamable: Socionics or the soci-
ological turn of/to distributed artificial intelligence. Autonomous Agents and
Multi-Agent Systems (AAMAS), 4:155-186.

|[March and Simon, 1958] March, J. G. and Simon, H. A. (1958). Organizations.
Wiley, New York.

[Mayo, 1945] Mayo, E. (1945). The Social Problems of an Industrial Civilization.
Harvard Graduate School of Business, Boston.

[Metzger et al., 2002] Metzger, J., Schillo, M., and Fischer, K. (2002). A multia-
gent based peer-to-peer network in java for distributed, efficient spam filtering.
In International Workshop on Scientific Engineering of Distributed Java Ap-
plications (FIDJ 2002), page submitted, Luxembourg.

[Miiller and Pischel, 1993| Miiller, J. and Pischel, M. (1993). The agent archi-
tecture interrap: Concept and application.

BIBLIOGRAPHY 109

[Odell, 2000a] Odell, J. (2000a). Agents (part 1): Technology and usage. Tech-
nical report, Cutter Consortium.

[Odell, 2000b] Odell, J. (2000b). Agents (part 2): Complex systems. Technical
report, Cutter Consortium.

|Ouchi, 1980 Ouchi, W. G. (1980). Markets, bureaucracies, and clans. Admin-
istrative Science Quarterly, 25.

|[Panzarasa and Jennings, 2001 Panzarasa, P. and Jennings, N. (2001). The or-
ganisation of sociality: A manifesto for a new science of multiagent systems. In
Proceedings of the Tenth European Workshop on Multi-Agent Systems (MAA-
MAWO1), Annecy, France.

|[Parunak, 1997] Parunak, H. V. D. (1997). Go to the ant: Engineering principles
from natural agent systems. Annals of Operations Research, 75:69-101.

|Parunak and Brueckner, 2002] Parunak, H. V. D. and Brueckner, S. (2002). Co-
x: Defining what agents do together. AAMAS 2002 Workshop on Teamwork
and Coalition Formation.

[Parunak, 1995] Parunak, V. (1995). Manufacturing experience with the contract
net. In Huhns, M., editor, Distributed Artificial Intelligence, pages 285-310.
Pitman, London.

[Poslad et al., 2000] Poslad, S., Buckle, P., and Hadingham, R. (2000). The fipa-
os agent platform: Open source for open standards. In Proceedings of the
oth International Conference and Ezhibition on the Practical Application of
Intelligent Agents and Multi-Agents, pages 355—368.

[RoboCup, 2002] RoboCup (2002). http://www.robocup.org.

ussell and Norvig, ussell, S. and Norvig, P. . Artificial Intelli-
Russell and Norvig, 1995] Russell, S. and Norvig, P. (1995). Artificial Intelli
gence: A Modern Approach. Prentice Hall.

[Sahal, 1979] Sahal, D. (1979). A unified theory of self-organization. Journal of
Cybernetics, 9:127-142.

andholm, andholm, 1. . Negotiation among self-interestea com-
Sandholm, 1996| Sandholm, T. (1996). N atl If-1 d
putationally limited agents. PhD thesis, University of Massachusetts, Amherst.

[Sandholm and Lesser, 1996] Sandholm, T. W. and Lesser, V. R. (1996). Ad-
vantages of a leveled commitment contracting protocol. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence, Portland, OR.

110 BIBLIOGRAPHY

[Schillo et al., 2002| Schillo, M., Kray, C., and Fischer, K. (2002). The Eager
Bidder Problem: A Fundamental Problem of DAI and Selected Solutions. In
Proceedings of the First International Conference on Autonomous Agents and
Multiagent Systems.

[Schillo et al., 2001a] Schillo, M., Zinnikus, I., and Fischer, K. (2001a). Towards
a theory of flexible holons: Modelling institutions for making multi-agent sys-
tems robust. 2nd Workshop on Norms and Institutions in MAS at Agents
2001.

[Schillo et al., 2001b| Schillo, M., Zinnikus, 1., and Fischer, K. (2001b). Towards
a theory of flexible holons: Modelling institutions for making multi-agent sys-
tems robust. 2nd Workshop on Norms and Institutions in MAS.

[Searle, 1969] Searle, J. (1969). Speech Acts: An FEssay in the Philosophy of
Language. Cambridge University Press.

[Sen and Durfee, 1994] Sen, S. and Durfee, E. H. (1994). On the design of an
adaptive meeting scheduler. In Proc. of the Tenth IEEE Conference on Al
Applications, pages 40-46.

[Shen et al., 1998] Shen, W., Xue, D., and Norrie, D. H. (1998). An agent-based
manufacturing enterprise infrastructure for distributed integrated intelligent
manufacturing systems. In Nwana, H. S. and Ndumu, D. T., editors, Pro-

ceedings of the 3rd International Conference on the Practical Applications of
Agents and Multi-Agent Systems (PAAM-98), pages 533-548, London, UK.

[Shoham, 1993] Shoham, Y. (1993). Agent-oriented programming. Artificial In-
telligence, 60:51-92.

[Singh, 1997| Singh, M. P. (1997). Commitments among autonomous agents in
information-rich environments. In Modelling Autonomous Agents in a Multi-
Agent World, pages 141-155.

[Smith, 1980] Smith, R. (1980). The contract net protocol: High level commu-
nication and control in a distributed problem solver. IEEE Transactions on
Computers, 29(12):1104-1113.

[Suda, 1989] Suda (1989). Future factory system formulated in Japan. TECHNQO
JAPAN, 22.

[Suda, 1990] Suda (1990). Future factory system formulated in Japan (2).
TECHNO JAPAN, 23.

[Turner and Jennings, 2000] Turner, P. J. and Jennings, N. R. (2000). Improving
the scalability of multi-agent systems. In Proceedings of the first International
Workshop on Infrastructure for Scalable Multi-Agent Systems.

BIBLIOGRAPHY 111

[Ulieru et al., 2001] Ulieru, M., Walker, S., and Brennan, B. (2001). Holonic
enterprise as a collaborative information ecosystem. In Proceedings of the
Workshop on Holons: Autonomous and Cooperating Agents for Industry, Au-
tonomous Agents 2001.

[van de Ven, 2000] van de Ven, J. (2000). The economics of the gift. http:
//ideas.uqam.ca/ideas/data/Papers/dgrkubcen200068.html.

[Walsh, 2001] Walsh, T. (2001). Empirical Methods in CS and AI. Tutorial held
at the Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI 01).

[Weifs, 1999a] Weif, G., editor (1999a). Multiagent Systems, chapter Prologue,
pages 1-23. MIT Press.

[Weifs, 1999b] Weik, G., editor (1999b). Multiagent Systems. A Modern Approach
to Distributed Artificial Intelligence. The MIT Press, Cambridge, MA.

[Williamson, 1975] Williamson, O. E. (1975). Markets and Hierarchies: Analysis
and Antitrust Implications. Free Press, New York.

[Wooldridge and Jennings, 1994] Wooldridge, M. and Jennings, N. R. (1994). In-
telligent agents: Theory and practice. http://www.doc.mmu.ac.uk/STAFF/
mike/ker95/ker95-html.h.

[ZEUS, 2002] ZEUS (2002). http://more.btexact.com/projects/agents/
zeus/.

